
A Synchronous Approach to
Quasi-Periodic Systems

PhD Defense — Guillaume Baudart

March 13, 2017

Embedded Systems

2

Embedded Systems

Reactive systems:

• constant interaction with the environment

• for an unbounded amount of time

• must not fail

2

Embedded Systems

Reactive systems:

• constant interaction with the environment

• for an unbounded amount of time

• must not fail

Quasi-periodic systems:

• several computing nodes

• unsynchronized architecture

2

Embedded Systems

Reactive systems:

• constant interaction with the environment

• for an unbounded amount of time

• must not fail

Quasi-periodic systems:

• several computing nodes

• unsynchronized architecture
aircraft, nuclear plants, trains, cars...

2

Quasi-Periodic Systems
Example: Flight Control System

switch

Actuators

Sensors

Sensors

Switch

Example from [MBT+15]

FGS

FGS

cmd1

cmd2

sensor1

sensor2

cmd

Generate pitch and roll guidance commands

3

Quasi-Periodic Systems
Example: Flight Control System

switch

Actuators

Sensors

Sensors

Switch

Example from [MBT+15]

FGS

FGS

cmd1

cmd2

sensor1

sensor2

cmd

Two redundant Flight Guidance Systems  
Only one active side (pilot side)

Generate pitch and roll guidance commands

3

Quasi-Periodic Systems
Example: Flight Control System

switch

Actuators

Sensors

Sensors

Switch

Example from [MBT+15]

FGS

FGS

cmd1

cmd2

sensor1

sensor2

cmd

Two redundant Flight Guidance Systems  
Only one active side (pilot side)

Crew can switch from one to the other

Generate pitch and roll guidance commands

3

Quasi-Periodic Systems
Example: Flight Control System

switch

Actuators

Sensors

Sensors

Switch

Example from [MBT+15]

FGS

FGS

cmd1

cmd2

sensor1

sensor2

cmd

Two redundant Flight Guidance Systems  
Only one active side (pilot side)

Crew can switch from one to the other

Generate pitch and roll guidance commands

3

Quasi-Periodic Systems
Example: Flight Control System

switch

Actuators

Sensors

Sensors

Switch

Example from [MBT+15]

FGS

FGS

cmd1

cmd2

sensor1

sensor2

cmd

Two redundant Flight Guidance Systems  
Only one active side (pilot side)

Crew can switch from one to the other

Generate pitch and roll guidance commands

The two modules must share
information to avoid control glitch

3

Quasi-Periodic Systems
Example: Flight Control System

switch

Actuators

Sensors

Sensors

Switch

Example from [MBT+15]

FGS

FGS

cmd1

cmd2

sensor1

sensor2

cmd

Two redundant Flight Guidance Systems  
Only one active side (pilot side)

Crew can switch from one to the other

Generate pitch and roll guidance commands

Run embedded application...

The two modules must share
information to avoid control glitch

3

Quasi-Periodic Systems
Example: Flight Control System

switch

Actuators

Sensors

Sensors

Switch

Example from [MBT+15]

FGS

FGS

cmd1

cmd2

sensor1

sensor2

cmd

Two redundant Flight Guidance Systems  
Only one active side (pilot side)

Crew can switch from one to the other

Generate pitch and roll guidance commands

Run embedded application...
...on distributed architectures

The two modules must share
information to avoid control glitch

3

Quasi-Periodic Architecture

a b

cd

• For each process: known bounds for the

time between two activations 

 

 

 clock activations 

 

• Buffered communication without

message inversion or loss 

• Bounded communication delay

0 ≤ τmin ≤ τ ≤ τmax

0 ≤ Tmin ≤ κi+1 − κi ≤ Tmax

(κi)i∈N

For each process, activations are triggered by a local clock

Execution: infinite sequence of activations

4

Quasi-Periodic Architecture

a b

cd

• For each process: known bounds for the

time between two activations 

 

 

 clock activations 

 

• Buffered communication without

message inversion or loss 

• Bounded communication delay

0 ≤ τmin ≤ τ ≤ τmax

0 ≤ Tmin ≤ κi+1 − κi ≤ Tmax

(κi)i∈N

For each process, activations are triggered by a local clock

Execution: infinite sequence of activations

4

Quasi-Periodic Architecture

a b

cd

• For each process: known bounds for the

time between two activations 

 

 

 clock activations 

 

• Buffered communication without

message inversion or loss 

• Bounded communication delay

0 ≤ τmin ≤ τ ≤ τmax

0 ≤ Tmin ≤ κi+1 − κi ≤ Tmax

(κi)i∈N

For each process, activations are triggered by a local clock

Execution: infinite sequence of activations

4

Quasi-Periodic Architecture

a b

cd

• For each process: known bounds for the

time between two activations 

 

 

 clock activations 

 

• Buffered communication without

message inversion or loss 

• Bounded communication delay

0 ≤ τmin ≤ τ ≤ τmax

0 ≤ Tmin ≤ κi+1 − κi ≤ Tmax

(κi)i∈N

For each process, activations are triggered by a local clock

Execution: infinite sequence of activations

4

Quasi-Periodic Architecture

a b

cd

• For each process: known bounds for the

time between two activations 

 

 

 clock activations 

 

• Buffered communication without

message inversion or loss 

• Bounded communication delay

0 ≤ τmin ≤ τ ≤ τmax

0 ≤ Tmin ≤ κi+1 − κi ≤ Tmax

(κi)i∈N

For each process, activations are triggered by a local clock

Execution: infinite sequence of activations

4

Sampling Artifacts

• Overwriting: loss of values 

 

• Oversampling: duplication of values 

 

• Combination of signals

5

at

bt

ct = at ^ btba

c = a ^ b

Example from [Cas00]

Sampling Artifacts

• Overwriting: loss of values 

 

• Oversampling: duplication of values 

 

• Combination of signals

5

at

bt

ct = at ^ btba

c = a ^ b

Example from [Cas00]

Sampling Artifacts

• Overwriting: loss of values 

 

• Oversampling: duplication of values 

 

• Combination of signals

5

at

bt

ct = at ^ btba

c = a ^ b

Example from [Cas00]

Sampling Artifacts

• Overwriting: loss of values 

 

• Oversampling: duplication of values 

 

• Combination of signals

5

at

bt

ct = at ^ btba

c = a ^ b

Example from [Cas00]

Sampling Artifacts

• Overwriting: loss of values 

 

• Oversampling: duplication of values 

 

• Combination of signals

5

at

bt

ct = at ^ btba

c = a ^ b

Example from [Cas00]

Sampling Artifacts

• Overwriting: loss of values 

 

• Oversampling: duplication of values 

 

• Combination of signals

5

at

bt

ct = at ^ btba

c = a ^ b

Example from [Cas00]

Sampling Artifacts

• Overwriting: loss of values 

 

• Oversampling: duplication of values 

 

• Combination of signals

5

Programming-based Approach

A program is a formal model ...

• precisely model every detail of the system

• based on the semantics of the programming language

6

Programming-based Approach

A program is a formal model ...

• precisely model every detail of the system

• based on the semantics of the programming language

... that can be executed and verified

• tests / simulations

• automated verification tools

6

Programming-based Approach

A program is a formal model ...

• precisely model every detail of the system

• based on the semantics of the programming language

... that can be executed and verified

• tests / simulations

• automated verification tools

6

Which programming language?

Synchronous Languages

Based on discrete logical time, they offer:

• Mathematically precise semantics

• Efficient and reliable code generation

• Dedicated verification tools

Domain specific languages for reactive systems

[Benveniste, Berry, Caspi, Edwards, Halbwachs, Le Guernic, Pouzet ...]

A synchronous program executes in a succession of discrete steps

The programmer writes high-level specifications: stream functions à la Lustre

7

Synchronous Languages

Based on discrete logical time, they offer:

• Mathematically precise semantics

• Efficient and reliable code generation

• Dedicated verification tools

Domain specific languages for reactive systems

[Benveniste, Berry, Caspi, Edwards, Halbwachs, Le Guernic, Pouzet ...]

A synchronous program executes in a succession of discrete steps

The programmer writes high-level specifications: stream functions à la Lustre

7

Scade/Lustre is routinely
used in the industry

Synchronous Languages

Based on discrete logical time, they offer:

• Mathematically precise semantics

• Efficient and reliable code generation

• Dedicated verification tools

Domain specific languages for reactive systems

[Benveniste, Berry, Caspi, Edwards, Halbwachs, Le Guernic, Pouzet ...]

Ideal framework to study quasi-periodic systems

A synchronous program executes in a succession of discrete steps

The programmer writes high-level specifications: stream functions à la Lustre

7

Scade/Lustre is routinely
used in the industry

Synchronous Languages

Based on discrete logical time, they offer:

• Mathematically precise semantics

• Efficient and reliable code generation

• Dedicated verification tools

Domain specific languages for reactive systems

[Benveniste, Berry, Caspi, Edwards, Halbwachs, Le Guernic, Pouzet ...]

Ideal framework to study quasi-periodic systems

A synchronous program executes in a succession of discrete steps

The programmer writes high-level specifications: stream functions à la Lustre

However for quasi-periodic systems:

• Multiple synchronous programs execute in parallel

• They are not synchronized

• The architecture is characterized by real-time parameters

7

Scade/Lustre is routinely
used in the industry

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

8

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

−Tmin

−Tmax

x

8

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

−Tmin

−Tmax

x

8

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

−Tmin

−Tmax

x

8

dx/dt = 1 : time elapsing

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

−Tmin

−Tmax

x

8

dx/dt = 1 : time elapsing

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

−Tmin

−Tmax

x

8

dx/dt = 1 : time elapsing

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

−Tmin

−Tmax

x c

8

dx/dt = 1 : time elapsing

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

−Tmin

−Tmax

x c c

8

dx/dt = 1 : time elapsing

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

−Tmin

−Tmax

x c c c

8

dx/dt = 1 : time elapsing

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

−Tmin

−Tmax

x c c c

8

dx/dt = 1 : time elapsing

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

8

dx/dt = 1 : time elapsing

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

Discrete controllers are activated on signal emissions

let hybrid rt_controller(sensor1, sensor2) = o where

rec c1 = metro(t_min, t_max)

and c2 = metro(t_min, t_max)

and present c1 → do emit cmd1 = fgs(sensor1) done

and present c2 → do emit cmd2 = fgs(sensor2) done

and cmd = if switch then cmd1 else cmd2

8

dx/dt = 1 : time elapsing

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

Discrete controllers are activated on signal emissions

let hybrid rt_controller(sensor1, sensor2) = o where

rec c1 = metro(t_min, t_max)

and c2 = metro(t_min, t_max)

and present c1 → do emit cmd1 = fgs(sensor1) done

and present c2 → do emit cmd2 = fgs(sensor2) done

and cmd = if switch then cmd1 else cmd2

Design discrete controllers and the real-time architecture
in the very same language.

8

dx/dt = 1 : time elapsing

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time

[Benveniste, Bourke, Caillaud, Pouzet]

Discrete controllers are activated on signal emissions

let hybrid rt_controller(sensor1, sensor2) = o where

rec c1 = metro(t_min, t_max)

and c2 = metro(t_min, t_max)

and present c1 → do emit cmd1 = fgs(sensor1) done

and present c2 → do emit cmd2 = fgs(sensor2) done

and cmd = if switch then cmd1 else cmd2

Design discrete controllers and the real-time architecture
in the very same language.

8

dx/dt = 1 : time elapsing

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Same approach in
Ptolemy [Lee]

Simulink [Mathworks]

Contributions

Verification

Verifying safety properties of

quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on  

quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of

quasi-periodic systems

Symbolic Simulation

9

Contributions

Verification

Verifying safety properties of

quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on  

quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of

quasi-periodic systems

Symbolic Simulation

Abstraction is not sound in general
Give exact conditions of application
Generalization to multirate systems

9

Contributions

Verification

Verifying safety properties of

quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on  

quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of

quasi-periodic systems

Symbolic Simulation

Abstraction is not sound in general
Give exact conditions of application
Generalization to multirate systems

Unified synchronous framework
Executable specifications
Correctness proofs
Optimizations and comparisons

9

Contributions

Verification

Verifying safety properties of

quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on  

quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of

quasi-periodic systems

Symbolic Simulation

Abstraction is not sound in general
Give exact conditions of application
Generalization to multirate systems

Unified synchronous framework
Executable specifications
Correctness proofs
Optimizations and comparisons

Zélus extended with timed nondeterminism
Symbolic simulation
Modular source-to-source compilation
Prototype implementation

9

Overview

Verification

Verifying safety properties of

quasi-periodic systems

Quasi-Synchronous Abstraction

Contributions
Abstraction is not sound in general
Give exact conditions of application
Generalization to multirate systems

10

VERIMAG
UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate

38610 GIERES

Tel. +33 4 76 63 48 48

Fax +33 4 76 63 48 50

Universite Joseph FourierCentre National de la Recherche Scientifique Institut National Polytechnique de Grenoble

Industrial practices observed at Airbus

[Cas00]

Overview

Verification

Verifying safety properties of

quasi-periodic systems

Quasi-Synchronous Abstraction

Contributions
Abstraction is not sound in general
Give exact conditions of application
Generalization to multirate systems

10

VERIMAG
UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate

38610 GIERES

Tel. +33 4 76 63 48 48

Fax +33 4 76 63 48 50

Universite Joseph FourierCentre National de la Recherche Scientifique Institut National Polytechnique de Grenoble

Industrial practices observed at Airbus

[Cas00]

ACSD'06

Overview

Verification

Verifying safety properties of

quasi-periodic systems

Quasi-Synchronous Abstraction

Verimag'08

DASC'14

Memocode'14

Memocode'15

Air Force'15

Contributions
Abstraction is not sound in general
Give exact conditions of application
Generalization to multirate systems

10[HM06, JHR08, BMY+14, LS14, LGS15, BMY+15]

[Bhattacharyya, Halbwachs, Jahier, Mandel, Miller, Tinelli, Larrieu, Raymond, Shankar, ...]

VERIMAG
UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate

38610 GIERES

Tel. +33 4 76 63 48 48

Fax +33 4 76 63 48 50

Universite Joseph FourierCentre National de la Recherche Scientifique Institut National Polytechnique de Grenoble

Industrial practices observed at Airbus

[Cas00]

ACSD'06

Overview

Verification

Verifying safety properties of

quasi-periodic systems

Quasi-Synchronous Abstraction

Verimag'08

DASC'14

Memocode'14

Memocode'15

Air Force'15

Contributions
Abstraction is not sound in general
Give exact conditions of application
Generalization to multirate systems

Is the abstraction sound?

10[HM06, JHR08, BMY+14, LS14, LGS15, BMY+15]

[Bhattacharyya, Halbwachs, Jahier, Mandel, Miller, Tinelli, Larrieu, Raymond, Shankar, ...]

Discrete-time Model (DT)Real-time Model (RT)

A B

TA TB

0 < Tmin ≤ TA, TB ≤ Tmax

0 < τmin ≤ τA, τB ≤ τmax

τA

τB

A

B

A B

scheduler
cA cB

A

B

The Big Picture

11

Discrete-time Model (DT)Real-time Model (RT)

A B

TA TB

0 < Tmin ≤ TA, TB ≤ Tmax

0 < τmin ≤ τA, τB ≤ τmax

τA

τB

A

B

A B

scheduler
cA cB

A

B

The Big Picture

11

Discrete-time Model (DT)Real-time Model (RT)

A B

TA TB

0 < Tmin ≤ TA, TB ≤ Tmax

0 < τmin ≤ τA, τB ≤ τmax

τA

τB

A

B

A B

scheduler
cA cB

A

B

The Big Picture

Soundness
DT |= ϕ.l, RT |= ϕ

11

Discrete-time Model (DT)Real-time Model (RT)

A B

TA TB

0 < Tmin ≤ TA, TB ≤ Tmax

0 < τmin ≤ τA, τB ≤ τmax

τA

τB

A

B

A B

scheduler
cA cB

A

B

The Big Picture

Soundness
DT |= ϕ.l, RT |= ϕ

11

Why discretize?
Verification in a simpler discrete-time model [Milner, Berry, Halbwachs, ...]

Use discrete-time model checking tools (Lesar-Verimag, Kind2-UIowa)

[HLR92, CMST16][Mil83, BS01, HB02, GG03a, GG03b, HM06]

Abstracting Real Time

12

Abstracting Real Time

Abstracting execution time

12

Abstracting Real Time

Abstracting execution time

τexec

τsend

12

Abstracting Real Time

Abstracting execution time

τexec

τsend

τ = τexec + τsend

12

Abstracting Real Time

Abstracting execution time

12

Abstracting Real Time

Abstracting execution time

13

Abstracting communication

Abstracting Real Time

Abstracting execution time

13

Abstracting communication

Abstracting Real Time

Abstracting execution time

13

Abstracting communication

Abstracting Real Time

Abstracting execution time

13

Abstracting communication
Problems:
• Lots of possible interleavings
• Too general

Abstracting Real Time

Abstracting execution time

13

Abstracting communication
Problems:
• Lots of possible interleavings
• Too general

Abstracting Real Time

Abstracting execution time

13

Can we do better using real-time assumptions?

The Quasi-Synchronous Abstraction
Focus on 'almost' synchronous architectures with fast transmissions

“It is not the case that a component process executes
 more than twice between two successive executions

of another process.”

14

The Quasi-Synchronous Abstraction
Focus on 'almost' synchronous architectures with fast transmissions

Reduce the state-space in two ways:

“It is not the case that a component process executes
 more than twice between two successive executions

of another process.”

14

The Quasi-Synchronous Abstraction
Focus on 'almost' synchronous architectures with fast transmissions

Reduce the state-space in two ways:

1. Transmissions as unit delays  

(one step of the logical clock)

“It is not the case that a component process executes
 more than twice between two successive executions

of another process.”

14

The Quasi-Synchronous Abstraction
Focus on 'almost' synchronous architectures with fast transmissions

Reduce the state-space in two ways:

1. Transmissions as unit delays  

(one step of the logical clock)

“It is not the case that a component process executes
 more than twice between two successive executions

of another process.”

14

The Quasi-Synchronous Abstraction
Focus on 'almost' synchronous architectures with fast transmissions

Reduce the state-space in two ways:

1. Transmissions as unit delays  

(one step of the logical clock)

“It is not the case that a component process executes
 more than twice between two successive executions

of another process.”

14

The Quasi-Synchronous Abstraction
Focus on 'almost' synchronous architectures with fast transmissions

Reduce the state-space in two ways:

1. Transmissions as unit delays  

(one step of the logical clock)

Replace transmission with precedence

“It is not the case that a component process executes
 more than twice between two successive executions

of another process.”

14

The Quasi-Synchronous Abstraction
Focus on 'almost' synchronous architectures with fast transmissions

Reduce the state-space in two ways:

1. Transmissions as unit delays  

(one step of the logical clock) A process is at most twice as fast as another
2. Limit activation interleavings

Replace transmission with precedence

“It is not the case that a component process executes
 more than twice between two successive executions

of another process.”

14

The Quasi-Synchronous Abstraction
Focus on 'almost' synchronous architectures with fast transmissions

Reduce the state-space in two ways:

1. Transmissions as unit delays  

(one step of the logical clock) A process is at most twice as fast as another
2. Limit activation interleavings

Replace transmission with precedence

“It is not the case that a component process executes
 more than twice between two successive executions

of another process.”Is this abstraction sound?

14

Unitary Discretization

τmax

τmax

τmax

Theorem: A real-time model with more than two processes is, in

general, not unitary discretizable.

Always possible if transmissions
are not instantaneous

Definition: A trace is unitary discretizable if there exist a

discretization where transmission can be modeled as unit delays

15

Unitary Discretization

τmax

τmax

τmax

Theorem: A real-time model with more than two processes is, in

general, not unitary discretizable.

Always possible if transmissions
are not instantaneous

Definition: A trace is unitary discretizable if there exist a

discretization where transmission can be modeled as unit delays

15

Unitary Discretization

τmax

τmax

τmax

Theorem: A real-time model with more than two processes is, in

general, not unitary discretizable.

Always possible if transmissions
are not instantaneous

Definition: A trace is unitary discretizable if there exist a

discretization where transmission can be modeled as unit delays

15

Unitary Discretization

τmax

τmax

τmax

Theorem: A real-time model with more than two processes is, in

general, not unitary discretizable.

Always possible if transmissions
are not instantaneous

Definition: A trace is unitary discretizable if there exist a

discretization where transmission can be modeled as unit delays

15

Unitary Discretization

τmax

τmax

τmax

Theorem: A real-time model with more than two processes is, in

general, not unitary discretizable.

Always possible if transmissions
are not instantaneous

Definition: A trace is unitary discretizable if there exist a

discretization where transmission can be modeled as unit delays

15

Unitary Discretization

τmax

τmax

τmax

Theorem: A real-time model with more than two processes is, in

general, not unitary discretizable.

Always possible if transmissions
are not instantaneous

Definition: A trace is unitary discretizable if there exist a

discretization where transmission can be modeled as unit delays

15

Unitary Discretization

τmax

τmax

τmax

Theorem: A real-time model with more than two processes is, in

general, not unitary discretizable.

Always possible if transmissions
are not instantaneous

Definition: A trace is unitary discretizable if there exist a

discretization where transmission can be modeled as unit delays

15

Unitary Discretization

τmax

τmax

τmax

Theorem: A real-time model with more than two processes is, in

general, not unitary discretizable.

Always possible if transmissions
are not instantaneous

Definition: A trace is unitary discretizable if there exist a

discretization where transmission can be modeled as unit delays

15

Unitary Discretization

τmax

τmax

τmax

Theorem: A real-time model with more than two processes is, in

general, not unitary discretizable.

Always possible if transmissions
are not instantaneous

Definition: A trace is unitary discretizable if there exist a

discretization where transmission can be modeled as unit delays

15

Unitary Discretization

τmax

τmax

τmax

Theorem: A real-time model with more than two processes is, in

general, not unitary discretizable.

Always possible if transmissions
are not instantaneous

Some traces are not captured
by the discrete abstraction

Definition: A trace is unitary discretizable if there exist a

discretization where transmission can be modeled as unit delays

15

Trace Graph

x 1
−→ y =⇒ f(x) < f(y) x 0

−→ y =⇒ f(x) ≤ f(y)

x

y

x

y

Gather all contraints on a unitary discretization f in a weighted graph

After reception Before reception

16

Trace Graph

x 1
−→ y =⇒ f(x) < f(y) x 0

−→ y =⇒ f(x) ≤ f(y)

x

y

x

y

Gather all contraints on a unitary discretization f in a weighted graph

After reception Before reception

Lemma: A trace is unitary discretizable if

and only if there are no cycle of positive

weight in the associated trace graph.

Definition: A real-time model is unitary

discretizable if all possible traces are

unitary discretizable.

16

Trace Graph

x 1
−→ y =⇒ f(x) < f(y) x 0

−→ y =⇒ f(x) ≤ f(y)

x

y

x

y

Gather all contraints on a unitary discretization f in a weighted graph

After reception Before reception

Lemma: A trace is unitary discretizable if

and only if there are no cycle of positive

weight in the associated trace graph.
τmax

τmax

τmax

Definition: A real-time model is unitary

discretizable if all possible traces are

unitary discretizable.

16

Trace Graph

x 1
−→ y =⇒ f(x) < f(y) x 0

−→ y =⇒ f(x) ≤ f(y)

x

y

x

y

Gather all contraints on a unitary discretization f in a weighted graph

After reception Before reception

Lemma: A trace is unitary discretizable if

and only if there are no cycle of positive

weight in the associated trace graph.
τmax

τmax

τmax

1

Definition: A real-time model is unitary

discretizable if all possible traces are

unitary discretizable.

16

Trace Graph

x 1
−→ y =⇒ f(x) < f(y) x 0

−→ y =⇒ f(x) ≤ f(y)

x

y

x

y

Gather all contraints on a unitary discretization f in a weighted graph

After reception Before reception

Lemma: A trace is unitary discretizable if

and only if there are no cycle of positive

weight in the associated trace graph.
τmax

τmax

τmax

1

0

Definition: A real-time model is unitary

discretizable if all possible traces are

unitary discretizable.

16

Trace Graph

x 1
−→ y =⇒ f(x) < f(y) x 0

−→ y =⇒ f(x) ≤ f(y)

x

y

x

y

Gather all contraints on a unitary discretization f in a weighted graph

After reception Before reception

Lemma: A trace is unitary discretizable if

and only if there are no cycle of positive

weight in the associated trace graph.
τmax

τmax

τmax

1

0

0Definition: A real-time model is unitary

discretizable if all possible traces are

unitary discretizable.

16

Recovering Soundness

A B

D C

A B

C

A B

D C

Forbidden topologies in the static communication graph

u-cycle balanced u-cyclecycle

17

Recovering Soundness

A B

D C

A B

C

A B

D C

Forbidden topologies in the static communication graph

u-cycle balanced u-cyclecycle

17

Recovering Soundness

A B

D C

A B

C

A B

D C

Forbidden topologies in the static communication graph

u-cycle balanced u-cyclecycle

can be allowed at the cost of additional timing constraints

17

Recovering Soundness

A B

D C

A B

C

A B

D C

Forbidden topologies in the static communication graph

u-cycle balanced u-cyclecycle

can be allowed at the cost of additional timing constraints

Theorem: A quasi-periodic architecture is unitary discretizable if and only if, in

the communication graph 

1. All u-cycles are cycles of balanced u-cycle, or , and

2. There is no balanced u-cycle, or , and

3. There is no cycle in the communication graph, or

Lc: size of the longest elementary cycle

τmin = τmax

Tmin ≥ Lcτmax

τmax = 0

17

A

B

C

D

E

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

Recovering Soundness

18

A

B

C

D

E

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

Recovering Soundness

18

A

B

C

D

E

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

Recovering Soundness

18

A

B

C

D

E

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

Recovering Soundness

18

A

B

C

D

E

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmin

Recovering Soundness

18

A

B

C

D

E

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmin

1

Recovering Soundness

18

A

B

C

D

E

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmin

τmin

1

Recovering Soundness

18

A

B

C

D

E

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmin

1

τmin

1

Recovering Soundness

18

A

B

C

D

E

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

⇒ ε = (

τmax

τmin

1

τmin

1

Recovering Soundness

18

A

B

C

D

E

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

⇒ ε = (

τmax
0

τmin

1

τmin

1

Recovering Soundness

18

A

B

C

D

E

⇒ ε = (

τmax

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

⇒ ε = (

τmax
0

τmin

1

τmin

1

Recovering Soundness

18

A

B

C

D

E

⇒ ε = (

τmax

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

0

⇒ ε = (

τmax
0

τmin

1

τmin

1

Recovering Soundness

18

A

B

C

D

E

⇒ ε = (

τmax

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmax

⇒ ε = (

0

⇒ ε = (

τmax
0

τmin

1

τmin

1

Recovering Soundness

18

A

B

C

D

E

0

⇒ ε = (

τmax

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmax

⇒ ε = (

0

⇒ ε = (

τmax
0

τmin

1

τmin

1

Recovering Soundness

18

A

B

C

D

E

0

⇒ ε = (

τmax

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmax

⇒ ε = (

We built a cycle of positive weight!

0

⇒ ε = (

τmax
0

τmin

1

τmin

1

Recovering Soundness

18

Proof: On the other hand, by contraposition,

Recovering Soundness

19

Proof: On the other hand, by contraposition,

PC/u-cycle

Recovering Soundness

19

Proof: On the other hand, by contraposition,

PC/u-cycle

cycle

cycle

Recovering Soundness

19

Proof: On the other hand, by contraposition,

PC/u-cycle

cycle

cycle balanced

balanced

Recovering Soundness

19

Proof: On the other hand, by contraposition,

PC/u-cycle

cycle

cycle balanced

balanced

Recovering Soundness

+1 =⇒ τmax = 0

19

Proof: On the other hand, by contraposition,

PC/u-cycle

cycle

cycle balanced

balanced

Cond
ition

 1.

Recovering Soundness

+1 =⇒ τmax = 0

19

Proof: On the other hand, by contraposition,

PC/u-cycle

cycle

cycle balanced

balanced+1 =⇒ τmin < τmax

Cond
ition

 1.

Recovering Soundness

+1 =⇒ τmax = 0

19

Proof: On the other hand, by contraposition,

PC/u-cycle

cycle

cycle balanced

balanced+1 =⇒ τmin < τmax

Cond
ition

 2.

Cond
ition

 1.

Recovering Soundness

+1 =⇒ τmax = 0

19

Proof: On the other hand, by contraposition,

PC/u-cycle

cycle

cycle balanced

balanced

+1 =⇒ Tmin ≥ Lcτmax

+1 =⇒ τmin < τmax

Cond
ition

 2.

Cond
ition

 1.

Recovering Soundness

+1 =⇒ τmax = 0

19

Proof: On the other hand, by contraposition,

PC/u-cycle

cycle

cycle balanced

balanced

Cond
ition

 3.
+1 =⇒ Tmin ≥ Lcτmax

+1 =⇒ τmin < τmax

Cond
ition

 2.

Cond
ition

 1.

Recovering Soundness

+1 =⇒ τmax = 0

19

Topology Examples
Communications of the application

A

B

C

DE

(a) Line: Tmin ≥ 2τmax

A

B

C

DE

F

(b) Star: Tmin ≥ 2τmax

A

B

C

DE

(c) Ring: Tmin ≥ 5τmax

A

B

C

DE

(d) Mesh: τmax = 0

A

B

C

DE

(e) Double ring: τmax = 0

A

B

C

DE

(f) Clique: τmax = 0

Line Star Ring

Mesh Double ring Clique

20

Topology Examples
Communications of the application

A

B

C

DE

(a) Line: Tmin ≥ 2τmax

A

B

C

DE

F

(b) Star: Tmin ≥ 2τmax

A

B

C

DE

(c) Ring: Tmin ≥ 5τmax

A

B

C

DE

(d) Mesh: τmax = 0

A

B

C

DE

(e) Double ring: τmax = 0

A

B

C

DE

(f) Clique: τmax = 0

Line Star Ring

Mesh Double ring Clique

20

Require instantaneous communications

“It is not the case that a component process executes
 more than twice between two successive executions

of another process.”

Quasi-Synchronous Systems

Theorem: A real-time model is quasi-synchronous if and only if,

1. it is unitary discretizable

2. coucou2Tmin + τmin ≥ Tmax + τmax

Tmax

τmax

τmin

Tmin Tmin

Worst-case scenario

21

Multirate Systems
“It is not the case that a component process executes
more than n times between m successive executions

of another process.”

Worst-case scenario

Theorem: A real-time model is n/m-quasi-synchronous if and only if,

1. it is unitary discretizable

2. for any pair of communicating nodes A ✓ B

nT
A

min
+ τmin ≥ (m− 1)TB

max
+ τmax

nT
B

min
+ τmin ≥ (m− 1)TA

max
+ τmax

n times

...

...

τmin
τmaxm times

A

B
T

B

max
T

B

max

T
A

min
T

A

min T
A

min

22

n/m-quasi-synchrony [Smeding, Goessler]

[SG12]

Summary

The quasi-synchronous abstraction:

1. Model transmission as unit delays

2. Constrain node activations interleavings

Contributions:

• Condition 1 is not sound in general

• Notion of unitary discretization

• Exact conditions to recover soundness

• Characterization of quasi-synchronous systems

• Generalization to multirate systems

Constrain both the communication graph and the real-time
characteristics of the architecture to recover soundness of the

quasi-synchronous abstraction.

[FMCAD 2016]23

Implementation

Deploying code on  

quasi-periodic architectures

Loosely Time-Triggered Architectures

Overview

24

Implementation

Deploying code on  

quasi-periodic architectures

Loosely Time-Triggered Architectures

Overview

How to preserve the semantics
of the embedded application?

24

Implementation

Deploying code on  

quasi-periodic architectures

Loosely Time-Triggered Architectures

Overview

EMSOFT'02

EMSOFT'07

CDC'08
IEEE Comp.'08

EMSOFT'10

How to preserve the semantics
of the embedded application?

24[BCLG+02, BCDN+07, CB08, TPB+08, BBC10]

[Benveniste, Bouillard, Caspi, Di Natale, Pinello, Talpin, Tripakis, Sangiovanni-Vincentelli]

Contributions
Unified synchronous framework
Executable specifications
Correctness proofs
Optimizations and comparisons

Implementation

Deploying code on  

quasi-periodic architectures

Loosely Time-Triggered Architectures

Overview

EMSOFT'02

EMSOFT'07

CDC'08
IEEE Comp.'08

EMSOFT'10

How to preserve the semantics
of the embedded application?

24[BCLG+02, BCDN+07, CB08, TPB+08, BBC10]

[Benveniste, Bouillard, Caspi, Di Natale, Pinello, Talpin, Tripakis, Sangiovanni-Vincentelli]

(of an application on a quasi-periodic architecture)

How to Preserve the Semantics?

25

Clock synchronization
e.g. TTA [Kopetz, Bauer 2003]

M1

M4

M2

M3

Require dedicated hardware 

and dedicated controllers

(of an application on a quasi-periodic architecture)

How to Preserve the Semantics?

25

M1

M4

M2

M3

Unsynchronized nodes

+ Middleware = LTTA

Lightweight alternative

Clock synchronization
e.g. TTA [Kopetz, Bauer 2003]

M1

M4

M2

M3

Require dedicated hardware 

and dedicated controllers

(of an application on a quasi-periodic architecture)

How to Preserve the Semantics?

25

26

A Synchronous Framework
Previous model: timed Petri nets

 [Benveniste, Caspi, Bouillard]

[BBC10, BBBC14]

guard (1)

guard (0)

set (1) reset (0)

π1

i

π0

i

πi

1

1

0

0

w1

i , . . . , w
qi−1

i

v1i , . . . , v
qi−1

i

πi ri8j 6= i w
qj
j

pi − 1 transitions

r
pi−1

i r2i r1i

w1

i w
qi−1

i
w

qi
i

w1

i w
qi−1

i
w

qi
iw2

i

v1i v2i v
qi−2

i

r
pi−2

i

v
qi−1

i

qi − 1 transitions

ri

ri

Help: Design the protocol

Analysis (worst case throughput)

But: Cannot be compiled/simulated

Mix real-time characteristics and discrete code

LTTA Controller

Mealy Machine

o

im

om

i

c

A middleware controls the execution of the embedded application

The controller waits for new inputs and delays publications

let node ltta_node(i) = o where

rec (o, im) = ltta_controller(i, om)

and present im(v) → do emit om = machine(v) done

D

27

A Synchronous Framework

Shell wrapper: Latency insensitive design (LID)

[Carloni, McMillan, Sangiovanni-Vincentelli]

LTTA Controller

Mealy Machine

o

im

om

i

c

A middleware controls the execution of the embedded application

The controller waits for new inputs and delays publications

Logical clock models
node activation

let node ltta_node(i) = o where

rec (o, im) = ltta_controller(i, om)

and present im(v) → do emit om = machine(v) done

D

27

A Synchronous Framework

Shell wrapper: Latency insensitive design (LID)

[Carloni, McMillan, Sangiovanni-Vincentelli]

LTTA Controller

Mealy Machine

o

im

om

i

c

A middleware controls the execution of the embedded application

The controller waits for new inputs and delays publications

Logical clock models
node activation

Synchronous
application

let node ltta_node(i) = o where

rec (o, im) = ltta_controller(i, om)

and present im(v) → do emit om = machine(v) done

D

27

A Synchronous Framework

Shell wrapper: Latency insensitive design (LID)

[Carloni, McMillan, Sangiovanni-Vincentelli]

LTTA Controller

Mealy Machine

o

im

om

i

c

A middleware controls the execution of the embedded application

The controller waits for new inputs and delays publications

Logical clock models
node activationControls the execution

of the application

Synchronous
application

let node ltta_node(i) = o where

rec (o, im) = ltta_controller(i, om)

and present im(v) → do emit om = machine(v) done

D

27

A Synchronous Framework

Shell wrapper: Latency insensitive design (LID)

[Carloni, McMillan, Sangiovanni-Vincentelli]

LTTA Controller

Mealy Machine

o

im

om

i

c

A middleware controls the execution of the embedded application

The controller waits for new inputs and delays publications

Logical clock models
node activation

Input sampled
from memories (links)

Controls the execution
of the application

Synchronous
application

let node ltta_node(i) = o where

rec (o, im) = ltta_controller(i, om)

and present im(v) → do emit om = machine(v) done

D

27

A Synchronous Framework

Shell wrapper: Latency insensitive design (LID)

[Carloni, McMillan, Sangiovanni-Vincentelli]

LTTA Controller

Mealy Machine

o

im

om

i

c

A middleware controls the execution of the embedded application

The controller waits for new inputs and delays publications

Logical clock models
node activation

Input sampled
from memories (links)

Controls the execution
of the application

Synchronous
application

let node ltta_node(i) = o where

rec (o, im) = ltta_controller(i, om)

and present im(v) → do emit om = machine(v) done

D

27

A Synchronous Framework

trigger application

Shell wrapper: Latency insensitive design (LID)

[Carloni, McMillan, Sangiovanni-Vincentelli]

LTTA Controller

Mealy Machine

o

im

om

i

c

A middleware controls the execution of the embedded application

The controller waits for new inputs and delays publications

Logical clock models
node activation

Input sampled
from memories (links)

Controls the execution
of the application

Synchronous
application

let node ltta_node(i) = o where

rec (o, im) = ltta_controller(i, om)

and present im(v) → do emit om = machine(v) done

D

27

A Synchronous Framework

trigger application

Application output

Shell wrapper: Latency insensitive design (LID)

[Carloni, McMillan, Sangiovanni-Vincentelli]

LTTA Controller

Mealy Machine

o

im

om

i

c

A middleware controls the execution of the embedded application

The controller waits for new inputs and delays publications

Logical clock models
node activation

Input sampled
from memories (links)

Controls the execution
of the application

Synchronous
application

Output

let node ltta_node(i) = o where

rec (o, im) = ltta_controller(i, om)

and present im(v) → do emit om = machine(v) done

D

27

A Synchronous Framework

trigger application

Application output

Shell wrapper: Latency insensitive design (LID)

[Carloni, McMillan, Sangiovanni-Vincentelli]

LTTA Controller

Mealy Machine

o

im

om

i

c

A middleware controls the execution of the embedded application

The controller waits for new inputs and delays publications

Logical clock models
node activation

Input sampled
from memories (links)

Controls the execution
of the application

Synchronous
application

Output

let node ltta_node(i) = o where

rec (o, im) = ltta_controller(i, om)

and present im(v) → do emit om = machine(v) done

D

27

A Synchronous Framework

trigger application

Application output

Shell wrapper: Latency insensitive design (LID)

[Carloni, McMillan, Sangiovanni-Vincentelli]

Controllers are synchronous programs too!

LTTA Controller

Mealy Machine

o

im

om

i

c

A middleware controls the execution of the embedded application

The controller waits for new inputs and delays publications

Logical clock models
node activation

Input sampled
from memories (links)

Controls the execution
of the application

Synchronous
application

Output

let node ltta_node(i) = o where

rec (o, im) = ltta_controller(i, om)

and present im(v) → do emit om = machine(v) done

D

27

A Synchronous Framework

trigger application

Application output

Shell wrapper: Latency insensitive design (LID)

[Carloni, McMillan, Sangiovanni-Vincentelli]

Controllers are synchronous programs too!

The LTTA protocols

[TPB+08, CB08]28

Inspired by elastic circuits

[Cortadella, Kishinevsky, ...]

Wait

(* skip *)

Ready

(* skip *)

all_inputs_fresh /
emit im = data(i) and emit a

all_acks_fresh / emit o = m

BP-LTTA

Point-to-point communication
Acknowledgments
2 phases: Exec/Send

Back-Pressure

let node bp_controller(i, ra, om, mi) = (o, a, im) where

rec m = mem(om, mi)

and automaton

| Wait →

do (* skip *)

unless all_inputs_fresh then

do emit im = data(i) and emit a in Ready

| Ready →

do (* skip *)

unless all_acks_fresh then

do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)

and all_acks_fresh = forall_fresh(ra, o, false)

D

The LTTA protocols

[TPB+08, CB08]28

[Benveniste, Caspi, Di Natale, Pinello, Sangiovanni-Vincentelli, Tripakis]

Wait

(* skip *)

Ready

(* skip *)

all_inputs_fresh /
emit im = data(i) and emit a

all_acks_fresh / emit o = m

BP-LTTA

Point-to-point communication
Acknowledgments
2 phases: Exec/Send

Back-Pressure

let node bp_controller(i, ra, om, mi) = (o, a, im) where

rec m = mem(om, mi)

and automaton

| Wait →

do (* skip *)

unless all_inputs_fresh then

do emit im = data(i) and emit a in Ready

| Ready →

do (* skip *)

unless all_acks_fresh then

do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)

and all_acks_fresh = forall_fresh(ra, o, false)

D

The LTTA protocols

[TPB+08, CB08]28

Wait

(* skip *)

Ready

(* skip *)

all_inputs_fresh /
emit im = data(i) and emit a

all_acks_fresh / emit o = m

BP-LTTA

Point-to-point communication
Acknowledgments
2 phases: Exec/Send

Back-Pressure

let node bp_controller(i, ra, om, mi) = (o, a, im) where

rec m = mem(om, mi)

and automaton

| Wait →

do (* skip *)

unless all_inputs_fresh then

do emit im = data(i) and emit a in Ready

| Ready →

do (* skip *)

unless all_acks_fresh then

do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)

and all_acks_fresh = forall_fresh(ra, o, false)

D

Wait

n=p→(last n-1)

init n = 1

Ready

n=q→(last n-1)

last n = 1 /emit im = data(i)

last n = 1 or preempted /emit o = m

TB-LTTA

Broadcast communication
Waiting mechanisms
2 phases: Exec/Send

Time-Based

let node tb_controller(i, om, mi) = (o, im) where

rec m = mem(om, mi)

and init n = 1

and automaton

| Wait →

do n = p → (last n - 1)

unless (last n = 1) then

do emit im = data(i) in Ready

| Ready →

do n = q → (last n - 1)

unless ((last n = 1) or preempted) then

do emit o = m in Wait

and preempted = exists_fresh(i, im, true)

The LTTA protocols

[TPB+08, CB08]28

Replace acknowledgments

with timeouts

[Benveniste, Caspi]

Wait

(* skip *)

Ready

(* skip *)

all_inputs_fresh /
emit im = data(i) and emit a

all_acks_fresh / emit o = m

BP-LTTA

Point-to-point communication
Acknowledgments
2 phases: Exec/Send

Back-Pressure

let node bp_controller(i, ra, om, mi) = (o, a, im) where

rec m = mem(om, mi)

and automaton

| Wait →

do (* skip *)

unless all_inputs_fresh then

do emit im = data(i) and emit a in Ready

| Ready →

do (* skip *)

unless all_acks_fresh then

do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)

and all_acks_fresh = forall_fresh(ra, o, false)

D

Wait

n=p→(last n-1)

init n = 1

Ready

n=q→(last n-1)

last n = 1 /emit im = data(i)

last n = 1 or preempted /emit o = m

TB-LTTA

Broadcast communication
Waiting mechanisms
2 phases: Exec/Send

Time-Based

let node tb_controller(i, om, mi) = (o, im) where

rec m = mem(om, mi)

and init n = 1

and automaton

| Wait →

do n = p → (last n - 1)

unless (last n = 1) then

do emit im = data(i) in Ready

| Ready →

do n = q → (last n - 1)

unless ((last n = 1) or preempted) then

do emit o = m in Wait

and preempted = exists_fresh(i, im, true)

The LTTA protocols

[TPB+08, CB08]28

Wait

(* skip *)

Ready

(* skip *)

all_inputs_fresh /
emit im = data(i) and emit a

all_acks_fresh / emit o = m

BP-LTTA

Point-to-point communication
Acknowledgments
2 phases: Exec/Send

Back-Pressure

let node bp_controller(i, ra, om, mi) = (o, a, im) where

rec m = mem(om, mi)

and automaton

| Wait →

do (* skip *)

unless all_inputs_fresh then

do emit im = data(i) and emit a in Ready

| Ready →

do (* skip *)

unless all_acks_fresh then

do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)

and all_acks_fresh = forall_fresh(ra, o, false)

D

Inspired by

distributed algorithms

[Attiya, Dwork, Lynch, ...]

Wait

n=p→(last n-1)

init n = 1

Ready

n=q→(last n-1)

last n = 1 /emit im = data(i)

last n = 1 or preempted /emit o = m

TB-LTTA

Broadcast communication
Waiting mechanisms
2 phases: Exec/Send

Time-Based

let node tb_controller(i, om, mi) = (o, im) where

rec m = mem(om, mi)

and init n = 1

and automaton

| Wait →

do n = p → (last n - 1)

unless (last n = 1) then

do emit im = data(i) in Ready

| Ready →

do n = q → (last n - 1)

unless ((last n = 1) or preempted) then

do emit o = m in Wait

and preempted = exists_fresh(i, im, true)

Wait

(* skip *)

all_inputs_fresh /
emit im = data(i)

RB-L

Broadcast communication
Crash-detectors (timeouts)
1 phase: Exec + Send

Round-Based

let node rb_controller(i, om) = (o, im) where

rec automaton

| Wait →

do (* skip *)

unless all_inputs_fresh then

do emit im = data(i) in Wait

and all_inputs_fresh = forall_fresh(i, im, true)

and o = om

let node timeout(i_live) = (n ≤ 0) where

rec reset n = p fby (n - 1) every i_live

D

The LTTA protocols

[TPB+08, CB08]28

Wait

(* skip *)

Ready

(* skip *)

all_inputs_fresh /
emit im = data(i) and emit a

all_acks_fresh / emit o = m

BP-LTTA

Point-to-point communication
Acknowledgments
2 phases: Exec/Send

Back-Pressure

let node bp_controller(i, ra, om, mi) = (o, a, im) where

rec m = mem(om, mi)

and automaton

| Wait →

do (* skip *)

unless all_inputs_fresh then

do emit im = data(i) and emit a in Ready

| Ready →

do (* skip *)

unless all_acks_fresh then

do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)

and all_acks_fresh = forall_fresh(ra, o, false)

D

Wait

n=p→(last n-1)

init n = 1

Ready

n=q→(last n-1)

last n = 1 /emit im = data(i)

last n = 1 or preempted /emit o = m

TB-LTTA

Broadcast communication
Waiting mechanisms
2 phases: Exec/Send

Time-Based

let node tb_controller(i, om, mi) = (o, im) where

rec m = mem(om, mi)

and init n = 1

and automaton

| Wait →

do n = p → (last n - 1)

unless (last n = 1) then

do emit im = data(i) in Ready

| Ready →

do n = q → (last n - 1)

unless ((last n = 1) or preempted) then

do emit o = m in Wait

and preempted = exists_fresh(i, im, true)

Wait

(* skip *)

all_inputs_fresh /
emit im = data(i)

RB-L

Broadcast communication
Crash-detectors (timeouts)
1 phase: Exec + Send

Round-Based

let node rb_controller(i, om) = (o, im) where

rec automaton

| Wait →

do (* skip *)

unless all_inputs_fresh then

do emit im = data(i) in Wait

and all_inputs_fresh = forall_fresh(i, im, true)

and o = om

let node timeout(i_live) = (n ≤ 0) where

rec reset n = p fby (n - 1) every i_live

D

The LTTA protocols

[TPB+08, CB08]28

Wait

(* skip *)

Ready

(* skip *)

all_inputs_fresh /
emit im = data(i) and emit a

all_acks_fresh / emit o = m

BP-LTTA

Point-to-point communication
Acknowledgments
2 phases: Exec/Send

Back-Pressure

let node bp_controller(i, ra, om, mi) = (o, a, im) where

rec m = mem(om, mi)

and automaton

| Wait →

do (* skip *)

unless all_inputs_fresh then

do emit im = data(i) and emit a in Ready

| Ready →

do (* skip *)

unless all_acks_fresh then

do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)

and all_acks_fresh = forall_fresh(ra, o, false)

D

Wait

n=p→(last n-1)

init n = 1

Ready

n=q→(last n-1)

last n = 1 /emit im = data(i)

last n = 1 or preempted /emit o = m

TB-LTTA

Broadcast communication
Waiting mechanisms
2 phases: Exec/Send

Time-Based

let node tb_controller(i, om, mi) = (o, im) where

rec m = mem(om, mi)

and init n = 1

and automaton

| Wait →

do n = p → (last n - 1)

unless (last n = 1) then

do emit im = data(i) in Ready

| Ready →

do n = q → (last n - 1)

unless ((last n = 1) or preempted) then

do emit o = m in Wait

and preempted = exists_fresh(i, im, true)

Wait

(* skip *)

all_inputs_fresh /
emit im = data(i)

RB-L

Broadcast communication
Crash-detectors (timeouts)
1 phase: Exec + Send

Round-Based

let node rb_controller(i, om) = (o, im) where

rec automaton

| Wait →

do (* skip *)

unless all_inputs_fresh then

do emit im = data(i) in Wait

and all_inputs_fresh = forall_fresh(i, im, true)

and o = om

let node timeout(i_live) = (n ≤ 0) where

rec reset n = p fby (n - 1) every i_live

D

The LTTA protocols

[TPB+08, CB08]28

Architecture independent
Block if a node crashes

Wait

(* skip *)

Ready

(* skip *)

all_inputs_fresh /
emit im = data(i) and emit a

all_acks_fresh / emit o = m

BP-LTTA

Point-to-point communication
Acknowledgments
2 phases: Exec/Send

Back-Pressure

let node bp_controller(i, ra, om, mi) = (o, a, im) where

rec m = mem(om, mi)

and automaton

| Wait →

do (* skip *)

unless all_inputs_fresh then

do emit im = data(i) and emit a in Ready

| Ready →

do (* skip *)

unless all_acks_fresh then

do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)

and all_acks_fresh = forall_fresh(ra, o, false)

D

Wait

n=p→(last n-1)

init n = 1

Ready

n=q→(last n-1)

last n = 1 /emit im = data(i)

last n = 1 or preempted /emit o = m

TB-LTTA

Broadcast communication
Waiting mechanisms
2 phases: Exec/Send

Time-Based

let node tb_controller(i, om, mi) = (o, im) where

rec m = mem(om, mi)

and init n = 1

and automaton

| Wait →

do n = p → (last n - 1)

unless (last n = 1) then

do emit im = data(i) in Ready

| Ready →

do n = q → (last n - 1)

unless ((last n = 1) or preempted) then

do emit o = m in Wait

and preempted = exists_fresh(i, im, true)

Wait

(* skip *)

all_inputs_fresh /
emit im = data(i)

RB-L

Broadcast communication
Crash-detectors (timeouts)
1 phase: Exec + Send

Round-Based

let node rb_controller(i, om) = (o, im) where

rec automaton

| Wait →

do (* skip *)

unless all_inputs_fresh then

do emit im = data(i) in Wait

and all_inputs_fresh = forall_fresh(i, im, true)

and o = om

let node timeout(i_live) = (n ≤ 0) where

rec reset n = p fby (n - 1) every i_live

D

The LTTA protocols

[TPB+08, CB08]28

Architecture independent
Block if a node crashes

Require timing characteristics
Can run in degraded mode

Execution period << Communication delay

ε(%)

Slowdown

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

gc

tb

bp

rb

Jitter (%)

Slowdown

Comparisons with clock synchronization
Zélus simulations of the FGS example

Compute slowdown compared to a synchronous execution*

BP: Back-Pressure

TB: Time-Based

RB: Round-Based

GC: Global Clock

*The smaller, the better 29

Global Clock: based on a master clock synchronization [Kopetz]

arbitrary(t_min, t_max): Random choice

Execution period >> Communication delay

ε(%)

Slowdown

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

gc

bp

tb

rb

Jitter (%)

Slowdown

Comparisons with clock synchronization
Zélus simulations of the FGS example

Compute slowdown compared to a synchronous execution*

BP: Back-Pressure

TB: Time-Based

RB: Round-Based

GC: Global Clock

*The smaller, the better 29

Global Clock: based on a master clock synchronization [Kopetz]

arbitrary(t_min, t_max): Random choice

Summary

Loosely Time-Triggered Architectures:

How to deploy synchronous code?

Add a layer of middleware

Three protocols

Contributions:

• Unified synchronous framework

• Executable specifications

• Correctness proofs

• Optimization and comparisons

LTTA are lightweight protocols to ensure the correct execution
of synchronous code running on a quasi-periodic architecture

[EMSOFT 2015, ACM TECS 2016]30

Simulation

Simulating the possible behaviors of

quasi-periodic systems

Symbolic Simulation

Overview

[BP13, BDL06]
31

Simulation

Simulating the possible behaviors of

quasi-periodic systems

Symbolic Simulation

Overview

How to simulate
constrained nondeterminism?

[BP13, BDL06]
31

Simulation

Simulating the possible behaviors of

quasi-periodic systems

Symbolic Simulation

Overview

How to simulate
constrained nondeterminism?

[BP13, BDL06]

Zélus

Synchronous language

Continuous + Discrete

Modular compilation

Numeric solver

[Benveniste, Bourke, Caillaud, Pouzet]

Uppaal

Timed automata

Nondeterminism

Symbolic representation

[Behrmann, David, Larsen,...]

31

Contributions
Zélus extended with timed nondeterminism
Symbolic simulation
Modular source-to-source compilation
Prototype implementation

Simulation

Simulating the possible behaviors of

quasi-periodic systems

Symbolic Simulation

Overview

How to simulate
constrained nondeterminism?

[BP13, BDL06]

Zélus

Synchronous language

Continuous + Discrete

Modular compilation

Numeric solver

[Benveniste, Bourke, Caillaud, Pouzet]

Uppaal

Timed automata

Nondeterminism

Symbolic representation

[Behrmann, David, Larsen,...]

31

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Timed Nondeterminism
Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

Embedded application activates on signal emissions

32

We only use der x = 1

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Timed Nondeterminism
Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

Embedded application activates on signal emissions

32

We only use der x = 1

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Timed Nondeterminism
Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

Zsy: Zélus extended with timed nondeterminism

let hybrid metro(t_min, t_max) = c where

rec timer t init 0 reset c() → 0

and emit c when {t ≥ t_min}

and always {t ≤ t_max}

Embedded application activates on signal emissions

32

We only use der x = 1

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Timed Nondeterminism
Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

Zsy: Zélus extended with timed nondeterminism

let hybrid metro(t_min, t_max) = c where

rec timer t init 0 reset c() → 0

and emit c when {t ≥ t_min}

and always {t ≤ t_max}

Embedded application activates on signal emissions

timer (time elapsing)

32

We only use der x = 1

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Timed Nondeterminism
Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

Zsy: Zélus extended with timed nondeterminism

let hybrid metro(t_min, t_max) = c where

rec timer t init 0 reset c() → 0

and emit c when {t ≥ t_min}

and always {t ≤ t_max}

Embedded application activates on signal emissions

timer (time elapsing)
guard (may)

32

We only use der x = 1

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

invariant (must)

Timed Nondeterminism
Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

Zsy: Zélus extended with timed nondeterminism

let hybrid metro(t_min, t_max) = c where

rec timer t init 0 reset c() → 0

and emit c when {t ≥ t_min}

and always {t ≤ t_max}

Embedded application activates on signal emissions

timer (time elapsing)
guard (may)

32

We only use der x = 1

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

invariant (must)

Timed Nondeterminism
Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

Zsy: Zélus extended with timed nondeterminism

let hybrid metro(t_min, t_max) = c where

rec timer t init 0 reset c() → 0

and emit c when {t ≥ t_min}

and always {t ≤ t_max}

Embedded application activates on signal emissions

timer (time elapsing)
guard (may)

32

How to simulate such programs?

Tmin

Tmax Tmax

Tmin

time0 30 45 60 907515

Concrete Simulation
Example: 2-node quasi-periodic architecture

x

Random testing: test one execution, using numerical solvers

33

Tmin

Tmax Tmax

Tmin

time0 30 45 60 907515

Concrete Simulation
Example: 2-node quasi-periodic architecture

x

Random testing: test one execution, using numerical solvers

33

Tmin

Tmax Tmax

Tmin

time0 30 45 60 907515

Concrete Simulation
Example: 2-node quasi-periodic architecture

x

33

Random testing: test one execution, using numerical solvers

33

Tmin

Tmax Tmax

Tmin

time0 30 45 60 907515

Concrete Simulation
Example: 2-node quasi-periodic architecture

x

33

Random testing: test one execution, using numerical solvers

33

Tmin

Tmax Tmax

Tmin

time0 30 45 60 907515

Concrete Simulation
Example: 2-node quasi-periodic architecture

x

4333

Random testing: test one execution, using numerical solvers

33

Tmin

Tmax Tmax

Tmin

time0 30 45 60 907515

Concrete Simulation
Example: 2-node quasi-periodic architecture

x

4333

Random testing: test one execution, using numerical solvers

33

Tmin

Tmax Tmax

Tmin

time0 30 45 60 907515

Concrete Simulation
Example: 2-node quasi-periodic architecture

x

4333 78

Random testing: test one execution, using numerical solvers

33

Tmin

Tmax Tmax

Tmin

time0 30 45 60 907515

Concrete Simulation
Example: 2-node quasi-periodic architecture

x

4333 78

Random testing: test one execution, using numerical solvers

33

Can we do better than random?

Tmin

Tmax Tmax

Tmin

time0 30 45 60 907515

Concrete Simulation
Example: 2-node quasi-periodic architecture

x

Random testing: test one execution, using numerical solvers

33

Can we do better than random?

Tmin

Tmax Tmax

Tmin

Symbolic Simulation
Example: a 2-node quasi-periodic architecture

x

Symbolic simulation: capture multiple executions, using DBMs

time0 30 45 60 907515

34

Tmin

Tmax Tmax

Tmin

Symbolic Simulation
Example: a 2-node quasi-periodic architecture

x

Symbolic simulation: capture multiple executions, using DBMs

Zones characterized by a set of possible choices

time0 30 45 60 907515

34

Tmin

Tmax Tmax

Tmin

Symbolic Simulation
Example: a 2-node quasi-periodic architecture

x

Symbolic simulation: capture multiple executions, using DBMs

Zones characterized by a set of possible choices

time0 30 45 60 907515

34

Tmin

Tmax Tmax

Tmin

Symbolic Simulation
Example: a 2-node quasi-periodic architecture

x

Symbolic simulation: capture multiple executions, using DBMs

Zones characterized by a set of possible choices

time0 30 45 60 907515

34

Tmin

Tmax Tmax

Tmin

Symbolic Simulation
Example: a 2-node quasi-periodic architecture

x

Symbolic simulation: capture multiple executions, using DBMs

Zones characterized by a set of possible choices

time0 30 45 60 907515

34

Tmin

Tmax Tmax

Tmin

Symbolic Simulation
Example: a 2-node quasi-periodic architecture

x

Symbolic simulation: capture multiple executions, using DBMs

Zones characterized by a set of possible choices

time0 30 45 60 907515

34

Tmin

Tmax Tmax

Tmin

Symbolic Simulation
Example: a 2-node quasi-periodic architecture

x

Symbolic simulation: capture multiple executions, using DBMs

Zones characterized by a set of possible choices

time0 30 45 60 907515

34

Tmin

Tmax Tmax

Tmin

Symbolic Simulation
Example: a 2-node quasi-periodic architecture

x

Symbolic simulation: capture multiple executions, using DBMs

Zones characterized by a set of possible choices

time0 30 45 60 907515

34

Tmin

Tmax Tmax

Tmin

Symbolic Simulation
Example: a 2-node quasi-periodic architecture

x

Symbolic simulation: capture multiple executions, using DBMs

Zones characterized by a set of possible choices

time0 30 45 60 907515

34

Tmin

Tmax Tmax

Tmin

Symbolic Simulation
Example: a 2-node quasi-periodic architecture

x

Symbolic simulation: capture multiple executions, using DBMs

Zones characterized by a set of possible choices

time0 30 45 60 907515

34

Simulate all possible traces
given a sequence of events

Symbolic Runtime
Compute the succession of zones

i

sv

wait

gvp

zcp

ztrig
zg

f_symb

o

zi

za

gv

znext

zc

bv

bw

gv
[] fby .

zc
zall fby .

f

35

Symbolic Runtime
Compute the succession of zones

i

sv

wait

gvp

zcp

ztrig
zg

f_symb

o

zi

za

gv

znext

zc

bv

bw

gv
[] fby .

zc
zall fby .

f

Transition
(user choice)

35

Symbolic Runtime
Compute the succession of zones

i

sv

wait

gvp

zcp

ztrig
zg

f_symb

o

zi

za

gv

znext

zc

bv

bw

gv
[] fby .

zc
zall fby .

f

Transition
(user choice)

35

Current zone
(DBM)

Symbolic Runtime
Compute the succession of zones

i

sv

wait

gvp

zcp

ztrig
zg

f_symb

o

zi

za

gv

znext

zc

bv

bw

gv
[] fby .

zc
zall fby .

f

Transition
(user choice)

Enabled
Transitions

35

Current zone
(DBM)

Symbolic Runtime
Compute the succession of zones

i

sv

wait

gvp

zcp

ztrig
zg

f_symb

o

zi

za

gv

znext

zc

bv

bw

gv
[] fby .

zc
zall fby .

f

Source to source compilationTransition
(user choice)

Enabled
Transitions

35

Current zone
(DBM)

Symbolic Runtime
Compute the succession of zones

i

sv

wait

gvp

zcp

ztrig
zg

f_symb

o

zi

za

gv

znext

zc

bv

bw

gv
[] fby .

zc
zall fby .

f

Source to source compilation

Discrete Zélus functions
Compute the succession of zones

Transition
(user choice)

Enabled
Transitions

35

Current zone
(DBM)

Symbolic Runtime
Compute the succession of zones

i

sv

wait

gvp

zcp

ztrig
zg

f_symb

o

zi

za

gv

znext

zc

bv

bw

gv
[] fby .

zc
zall fby .

f

Source to source compilation

Discrete Zélus functions
Compute the succession of zones

Previous state

Transition
(user choice)

Enabled
Transitions

35

Current zone
(DBM)

Source to Source Compilation

let hybrid metro(t_min, t_max) = c where

rec timer t init 0 reset c → 0

and emit c when {t_min ≤ t}

and always {t ≤ t_max}

Continuous components are compiled into discrete function manipulating zones

Continuous / Nondeterministic

36

Source to Source Compilation

let hybrid metro(t_min, t_max) = c where

rec timer t init 0 reset c → 0

and emit c when {t_min ≤ t}

and always {t ≤ t_max}

Continuous components are compiled into discrete function manipulating zones

symbolic

Continuous / Nondeterministic

causality
initialization

typing
lexing
parsing

36

Source to Source Compilation

let hybrid metro(t_min, t_max) = c where

rec timer t init 0 reset c → 0

and emit c when {t_min ≤ t}

and always {t ≤ t_max}

let node metro_symb(t, wait, c, zg, (t_min, t_max)) = c, zi, za, [zs] where

rec zit = present (true fby false) → zreset(zg, t, 0)

| c → zreset(zg, t, 0)

else zg

and zs = zmake({t ≥ t_min})

and zb = zmake({t ≤ t_max})

and za = zinterfold([zb])

and zi = if wait then (zall fby zi) else zit

Continuous components are compiled into discrete function manipulating zones

symbolic

Continuous / Nondeterministic

causality
initialization

typing
lexing
parsing

36

Source to Source Compilation

let hybrid metro(t_min, t_max) = c where

rec timer t init 0 reset c → 0

and emit c when {t_min ≤ t}

and always {t ≤ t_max}

let node metro_symb(t, wait, c, zg, (t_min, t_max)) = c, zi, za, [zs] where

rec zit = present (true fby false) → zreset(zg, t, 0)

| c → zreset(zg, t, 0)

else zg

and zs = zmake({t ≥ t_min})

and zb = zmake({t ≤ t_max})

and za = zinterfold([zb])

and zi = if wait then (zall fby zi) else zit

Continuous components are compiled into discrete function manipulating zones

symbolic

Continuous / Nondeterministic

Discrete / Deterministic
Manipulate zones
Transitions controlled by the user

causality
initialization

typing
lexing
parsing

36

Prototype Implementation
let hybrid metro(t_min, t_max) = c where

rec timer t init 0 reset c() → 0

and emit c when {t ≥ t_min}

and always {t ≤ t_max}

let hybrid archi(t_min, t_max) = c1, c2 where

rec c1 = metro(t_min, t_max)

and c2 = metro(t_min, t_max)

37

Prototype Implementation
let hybrid metro(t_min, t_max) = c where

rec timer t init 0 reset c() → 0

and emit c when {t ≥ t_min}

and always {t ≤ t_max}

let hybrid archi(t_min, t_max) = c1, c2 where

rec c1 = metro(t_min, t_max)

and c2 = metro(t_min, t_max)

zeluc -symb archi qpa.zls

let node metro_symb(t, wait, c, zg, (t_min, t_max)) = c, zi, za, [zs] where

rec zit = present (true fby false) → zreset(zg, t, 0)

| c → zreset(zg, t, 0)

else zg

and zs = zmake({t ≥ t_min})

and zb = zmake({t ≤ t_max})

and za = zinterfold([zb])

and zi = if wait then (zall fby zi) else zit

let node archi_symb((t1, t2), wait, (c1, c2), zg, (t_min, t_max)) =

(c1', c2'), zi, za, gv1 @ gv2 where

rec c1', zi1, za1, gv1 = metro_symb(t1, wait, c1, zg, (t_min, t_max))

and c2', zi2, za2, gv2 = metro_symb(t2, wait, c2, zi1, (t_min, t_max))

and za = zinterfold([za1; za2])

and zi = if wait then (zall fby zi) else zi2

(*** Runtime ***)

let node archi(wait, (c1, c2), (t_min, t_max)) = (c1', c2'), bv, bw, zc where

rec zg = ztrig([c1; c2], zcp, gvp)

and (c1', c2'), zi, za, gv = archi_symb((1, 2), wait, (c1, c2), zg, (t_min, t_max))

and zc, bv, bw = znext(wait, zi, za, gv)

and zcp = zall fby zc

and gvp = [] fby gv

37

Prototype Implementation
let hybrid metro(t_min, t_max) = c where

rec timer t init 0 reset c() → 0

and emit c when {t ≥ t_min}

and always {t ≤ t_max}

let hybrid archi(t_min, t_max) = c1, c2 where

rec c1 = metro(t_min, t_max)

and c2 = metro(t_min, t_max)

zeluc -symb archi qpa.zls

zeluc qpa_run.zls

let node metro_symb(t, wait, c, zg, (t_min, t_max)) = c, zi, za, [zs] where

rec zit = present (true fby false) → zreset(zg, t, 0)

| c → zreset(zg, t, 0)

else zg

and zs = zmake({t ≥ t_min})

and zb = zmake({t ≤ t_max})

and za = zinterfold([zb])

and zi = if wait then (zall fby zi) else zit

let node archi_symb((t1, t2), wait, (c1, c2), zg, (t_min, t_max)) =

(c1', c2'), zi, za, gv1 @ gv2 where

rec c1', zi1, za1, gv1 = metro_symb(t1, wait, c1, zg, (t_min, t_max))

and c2', zi2, za2, gv2 = metro_symb(t2, wait, c2, zi1, (t_min, t_max))

and za = zinterfold([za1; za2])

and zi = if wait then (zall fby zi) else zi2

(*** Runtime ***)

let node archi(wait, (c1, c2), (t_min, t_max)) = (c1', c2'), bv, bw, zc where

rec zg = ztrig([c1; c2], zcp, gvp)

and (c1', c2'), zi, za, gv = archi_symb((1, 2), wait, (c1, c2), zg, (t_min, t_max))

and zc, bv, bw = znext(wait, zi, za, gv)

and zcp = zall fby zc

and gvp = [] fby gv

37

Conclusion

Verification

Verifying safety properties of

quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on  

quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of

quasi-periodic systems

Symbolic Simulation

38

Conclusion

Verification

Verifying safety properties of

quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on  

quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of

quasi-periodic systems

Symbolic Simulation

Abstraction is not sound in general
Give exact conditions of application
Generalization to multirate systems

38

Conclusion

Verification

Verifying safety properties of

quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on  

quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of

quasi-periodic systems

Symbolic Simulation

Abstraction is not sound in general
Give exact conditions of application
Generalization to multirate systems

Unified synchronous framework
Executable specifications
Correctness proofs
Optimizations and comparisons

38

Conclusion

Verification

Verifying safety properties of

quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on  

quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of

quasi-periodic systems

Symbolic Simulation

Abstraction is not sound in general
Give exact conditions of application
Generalization to multirate systems

Unified synchronous framework
Executable specifications
Correctness proofs
Optimizations and comparisons

Zélus extended with timed nondeterminism
Symbolic simulation
Modular source-to-source compilation
Prototype implementation

38

Open Questions

Real-time requirements

LTTAs preserve the semantics at the cost of additional latency

Not acceptable for all applications (emergency button)

What is the impact of these delays on the application?

39

Open Questions

Real-time requirements

LTTAs preserve the semantics at the cost of additional latency

Not acceptable for all applications (emergency button)

What is the impact of these delays on the application?

39

Characterizing robust applications

Some applications are already robust to sampling artifacts (3-voters)

How to check this property on a given application?

What is the impact of the sampling artifacts on the semantics?

Open Questions

Real-time requirements

LTTAs preserve the semantics at the cost of additional latency

Not acceptable for all applications (emergency button)

What is the impact of these delays on the application?

39

Characterizing robust applications

Some applications are already robust to sampling artifacts (3-voters)

How to check this property on a given application?

What is the impact of the sampling artifacts on the semantics?

Zélus in a proof assistant

Formalization of a the semantics mixing discrete and continuous time

Prove properties involving real-time specifications (Time-Based LTTA)

Open Questions

Real-time requirements

LTTAs preserve the semantics at the cost of additional latency

Not acceptable for all applications (emergency button)

What is the impact of these delays on the application?

39

Characterizing robust applications

Some applications are already robust to sampling artifacts (3-voters)

How to check this property on a given application?

What is the impact of the sampling artifacts on the semantics?

Zélus in a proof assistant

Formalization of a the semantics mixing discrete and continuous time

Prove properties involving real-time specifications (Time-Based LTTA)

Model checking

Explore all possible simulation choices (symbolic simulation)

Reuse existing technique for model checking timed systems (Uppaal)

Model check the generated code with Kind2 and Lesar

[EMSOFT'13] A Synchronous Embedding of Antescofo, a Domain-Specific Language for

Interactive Mixed Music, with Florent Jacquemard, Louis Mandel, and Marc Pouzet

International Conference on Embedded Software (EMSOFT) 2013

[FARM'13] Programming Mixed-Music in ReactiveML,  

with Louis Mandel and Marc Pouzet

ICFP Workshop on Functional Art, Music, Modeling and Design (FARM) 2013

[EMSOFT'15] Loosely Time-Triggered Architectures: Improvements and Comparisons,

with Timothy Bourke and Albert Benveniste

International Conference on Embedded Software (EMSOFT) 2015

[TECS'16] Loosely Time-Triggered Architectures: Improvements and Comparisons,

with Timothy Bourke and Albert Benveniste

ACM Transaction on Embedded Computing Systems (TECS) 2016

[FMCAD'16] Soundness of the Quasi-Synchronous Abstraction,  

with Timothy Bourke and Marc Pouzet

International Conference on Formal Methods in Computer-Aided Design (FMCAD) 2016

[JFLA'17] CloudLens, un langage de script pour l'analyse de données semi-structurées

with Louis Mandel, Olivier Tardieu, and Mandana Vaziri

Journées Francophone des Langages Applicatifs (JFLA) 2017

[Submitted] CloudLens, a scripting language for semi-structured data

with Louis Mandel, Olivier Tardieu, and Mandana Vaziri

40

41

