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• for an unbounded amount of time  

• must not fail

Quasi-periodic systems: 

• several computing nodes 

• unsynchronized architecture
aircraft, nuclear plants, trains, cars...
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Two redundant Flight Guidance Systems  
Only one active side (pilot side)

Crew can switch from one to the other

Generate pitch and roll guidance commands

Run embedded application...
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The two modules must share 
information to avoid control glitch
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Which programming language?



Synchronous Languages

Based on discrete logical time, they offer: 
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• Efficient and reliable code generation 
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The programmer writes high-level specifications: stream functions à la Lustre
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• Efficient and reliable code generation 

• Dedicated verification tools

Domain specific languages for reactive systems 

[Benveniste, Berry, Caspi, Edwards, Halbwachs, Le Guernic, Pouzet ...] 

Ideal framework to study quasi-periodic systems

A synchronous program executes in a succession of discrete steps 

The programmer writes high-level specifications: stream functions à la Lustre

However for quasi-periodic systems: 

• Multiple synchronous programs execute in parallel 

• They are not synchronized 

• The architecture is characterized by real-time parameters

7

Scade/Lustre is routinely 
used in the industry



Zélus: Lustre + ODEs

Continuous-time dynamics of the architecture simulated with ODEs

http://zelus.di.ens.fr

A synchronous language extended with continuous time 

[Benveniste, Bourke, Caillaud, Pouzet]
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dx/dt = 1 :  time elapsing

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset z → -. arbitrary(t_min, t_max)

and z = up(x)

and present z → do emit c done

Same approach in 
Ptolemy [Lee] 

Simulink [Mathworks]
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Symbolic Simulation

Abstraction is not sound in general 
Give exact conditions of application 
Generalization to multirate systems

Unified synchronous framework  
Executable specifications 
Correctness proofs 
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Prototype implementation
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Contributions 
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Give exact conditions of application 
Generalization to multirate systems

Is the abstraction sound?

10[HM06, JHR08, BMY+14, LS14, LGS15, BMY+15]

[Bhattacharyya, Halbwachs, Jahier, Mandel, Miller, Tinelli, Larrieu, Raymond, Shankar, ...]
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Why discretize?  
Verification in a simpler discrete-time model [Milner, Berry, Halbwachs, ...] 

Use discrete-time model checking tools (Lesar-Verimag, Kind2-UIowa) 

[HLR92, CMST16][Mil83, BS01, HB02, GG03a, GG03b, HM06]
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Abstracting communication
Problems:  
• Lots of possible interleavings 
• Too general

Abstracting Real Time

Abstracting execution time

13

Can we do better using real-time assumptions?
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Unitary Discretization

τmax

τmax

τmax

Theorem: A real-time model with more than two processes is, in 

general, not unitary discretizable.

Always possible if transmissions 
are not instantaneous

Some traces are not captured  
by the discrete abstraction

Definition: A trace is unitary discretizable if there exist a 

discretization where transmission can be modeled as unit delays
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D C
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C

A B

D C

Forbidden topologies in the static communication graph

u-cycle balanced u-cyclecycle

can be allowed at the cost of additional timing constraints

Theorem: A quasi-periodic architecture is unitary discretizable if and only if, in 

the communication graph 

1. All u-cycles are cycles of balanced u-cycle, or               , and 

2. There is no balanced u-cycle, or                    , and 

3. There is no cycle in the communication graph, or 

Lc: size of the longest elementary cycle

τmin = τmax

Tmin ≥ Lcτmax

τmax = 0
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“It is not the case that a component process executes 
 more than twice between two successive executions  

of another process.”

Quasi-Synchronous Systems

Theorem: A real-time model is quasi-synchronous if and only if, 

1. it is unitary discretizable 

2.  coucou2Tmin + τmin ≥ Tmax + τmax

Tmax

τmax

τmin

Tmin Tmin

Worst-case scenario

21



Multirate Systems
“It is not the case that a component process executes  
more than n times between m successive executions 

of another process.”

Worst-case scenario

Theorem: A real-time model is n/m-quasi-synchronous if and only if, 

1. it is unitary discretizable 

2. for any pair of communicating nodes  A ✓ B

nT
A

min
+ τmin ≥ (m− 1)TB

max
+ τmax

nT
B

min
+ τmin ≥ (m− 1)TA

max
+ τmax

n times

...

...

τmin
τmaxm times

A

B
T

B

max
T

B

max

T
A

min
T

A

min T
A

min

22

n/m-quasi-synchrony [Smeding, Goessler]

[SG12] 



Summary

The quasi-synchronous abstraction: 

1. Model transmission as unit delays 

2. Constrain node activations interleavings

Contributions: 

• Condition 1 is not sound in general 

• Notion of unitary discretization 

• Exact conditions to recover soundness 

• Characterization of quasi-synchronous systems 

• Generalization to multirate systems 

Constrain both the communication graph and the real-time 
characteristics of the architecture to recover soundness of the 

quasi-synchronous abstraction.

[FMCAD 2016]23
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Contributions 
Unified synchronous framework 
Executable specifications 
Correctness proofs 
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Clock synchronization
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A Synchronous Framework
Previous model: timed Petri nets 

 [Benveniste, Caspi, Bouillard]

[BBC10, BBBC14]

guard (1)
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Help: Design the protocol 

Analysis (worst case throughput) 

But: Cannot be compiled/simulated 

Mix real-time characteristics and discrete code



LTTA Controller

Mealy Machine
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A middleware controls the execution of the embedded application 

The controller waits for new inputs and delays publications

let node ltta_node(i) = o where

rec (o, im) = ltta_controller(i, om)

and present im(v) → do emit om = machine(v) done
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Summary

Loosely Time-Triggered Architectures: 

How to deploy synchronous code? 

Add a layer of middleware 

Three protocols

Contributions: 

• Unified synchronous framework 

• Executable specifications 

• Correctness proofs 

• Optimization and comparisons 

LTTA are lightweight protocols to ensure the correct execution 
of synchronous code running on a quasi-periodic architecture

[EMSOFT 2015, ACM TECS 2016]30
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Open Questions

Real-time requirements 

LTTAs preserve the semantics at the cost of additional latency 

Not acceptable for all applications (emergency button) 

What is the impact of these delays on the application?

39

Characterizing robust applications 

Some applications are already robust to sampling artifacts (3-voters) 

How to check this property on a given application? 

What is the impact of the sampling artifacts on the semantics?

Zélus in a proof assistant 

Formalization of a the semantics mixing discrete and continuous time 

Prove properties involving real-time specifications (Time-Based LTTA)

Model checking 

Explore all possible simulation choices (symbolic simulation) 

Reuse existing technique for model checking timed systems (Uppaal) 

Model check the generated code with Kind2 and Lesar
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