A Synchronous Approach to
Quasi-Periodic Systems

PhD Defense — Guillaume Baudart

March 13, 2017

Embedded Systems

Embedded Systems

Reactive systems:

e constant interaction with the environment
e for an unbounded amount of time

e must not falil

Embedded Systems

Reactive systems:
e constant interaction with the environment
e for an unbounded amount of time

e must not falil

Quasi-periodic systems:
e several computing nodes
¢ unsynchronized architecture

Embedded Systems

Reactive systems:
e constant interaction with the environment
e for an unbounded amount of time

e must not falil

Quasi-periodic systems:
e several computing nodes
¢ unsynchronized architecture

aircraft, nuclear plantg, traing, carg..

Quasi-Periodic Systems

Example: Flight Control System

>

FGS

cmd1

sensor]
Sensors
sensor?2
Sensors
_ switch
Switch

>

cmd?2

cmd

Generate pitch and roll guidance commands

Actuators

Example from [MBT+15]

Two redundant Flight Guidance Systemg

Quasi-Periodic Systems

Example: Flight Control System

Only one active side (pilot gide)

>

FGS

cmd1

>

cmd?2

cmd

Generate pitch and roll guidance commands

sensor]
Sensors
sensor?2
Sensors
. switch
Switch

3

Actuators

Example from [MBT+15]

Two redundant Flight Guidance Systemg

Quasi-Periodic Systems

Example: Flight Control System

Only one active side (pilot gide)

>

FGS

cmd1

>

cmd?2

cmd

Crew can qwiteh from one to the other

Generate pitch and roll guidance commands

sensor]
Sensors
sensor?2
Sensors
. switch
Switch

3

Actuators

Example from [MBT+15]

Two redundant Flight Guidance Systemg

Quasi-Periodic Systems

Example: Flight Control System

Only one active side (pilot gide)

>

>

FGS

cmd1

cmd?2

cmd

Crew can qwiteh from one to the other

Generate pitch and roll guidance commands

sensor]
Sensors
sensor?2
Sensors
. switch
Switch

3

Actuators

Example from [MBT+15]

Quasi-Periodic Systems

Example: Flight Control System

Two redundant Flight Guidance Systemg
Only one active side (pilot gide)

sensor] cmd1
Sensors >
cmd
o > Actuators
sensor?2 cmd?2 4
Sensors > FGS
. switch
Switch
Crew can qwiteh from one to the other The two moduleg mugt chare

information to auoid control glitch
Generate pitch and roll guidance commands

3 Example from [MBT+15]

Quasi-Periodic Systems

Example: Flight Control System

Two redundant Flight Guidance Systemg Run embedded application...
Only one active side (pilot gide)
sensor] cmd1
Sensors >
cmd
l T o > Actuators
sensor? cmd? 4
Sensors > FGS
switch
Switch
Crew can switch from one to the other The two moduleg mugt ghare

information to auoid control glitch
Generate pitch and roll guidance commands

3 Example from [MBT+15]

Quasi-Periodic Systems

Example: Flight Control System

Two redundant Flight Guidance Systemg

Only one active side (pilot gide)

Run embedded application...
...on distributed architectures
cmd
cmd
o > Actuators
A
cmd?2

©)
!
sensor
Sensors >
sensor?
Sensors > FGS
t
(©)
. switch
Switch

Crew can qwiteh from one to the other

Generate pitch and roll guidance commands

3

The two moduleg must ghare
information to auoid control glitch

Example from [MBT+15]

Quasi-Periodic Architecture

For each process, activations are triggered by a local clock
Execution: infinite sequence of activations

e [or each process: known bounds for the
time between two activations

0 S Tmin S Ri+1 — R4 S Tmax
(Ki)ien clock activations [j_[

e Buffered communication without
message inversion or loss

¢ Bounded communication delay

0 S Tmin S T S Tmax

Quasi-Periodic Architecture

For each process, activations are triggered by a local clock
Execution: infinite sequence of activations

e [or each process: known bounds for the
time between two activations

0 S Tmin S Ri+1 — Ry S Tmax

(k4)ieN clock activations

e Buffered communication without
message inversion or loss

¢ Bounded communication delay

0 S Tmin S T S Tmax

Quasi-Periodic Architecture

For each process, activations are triggered by a local clock
Execution: infinite sequence of activations

e [or each process: known bounds for the
time between two activations

0 S Tmin S Ri+1 — Ry S Tmax

(k4)ieN clock activations

e Buffered communication without
message inversion or loss

¢ Bounded communication delay

0 S Tmin S T S Tmax

Quasi-Periodic Architecture

For each process, activations are triggered by a local clock
Execution: infinite sequence of activations

e [or each process: known bounds for the
time between two activations

0 S Tmin S Ri+1 — Ry S Tmax

(k4)ieN clock activations

e Buffered communication without
message inversion or loss

¢ Bounded communication delay

0 S Tmin S T S Tmax

Quasi-Periodic Architecture

For each process, activations are triggered by a local clock
Execution: infinite sequence of activations

e [or each process: known bounds for the
time between two activations

0 S Tmin S Ri+1 — Ry S Tmax

(k4)ieN clock activations

e Buffered communication without
message inversion or loss

¢ Bounded communication delay

0 S Tmin S T S Tmax

Sampling Artifacts

e Overwriting: loss of values

e Oversampling: duplication of values

Sampling Artifacts

e Overwriting: loss of values
e Oversampling: duplication of values

e Combination of signals

Example from [Cas00]

Sampling Artifacts

e Overwriting: loss of values
e Oversampling: duplication of values

e Combination of signals

Example from [Cas00]

Sampling Artifacts

e Overwriting: loss of values
e Oversampling: duplication of values

e Combination of signals

Example from [Cas00]

Sampling Artifacts

e Overwriting: loss of values
e Oversampling: duplication of values

e Combination of signals

Example from [Cas00]

Sampling Artifacts

e Overwriting: loss of values
e Oversampling: duplication of values

e Combination of signals

Example from [Cas00]

Sampling Artifacts

e Overwriting: loss of values
e Oversampling: duplication of values

e Combination of signals

Example from [Cas00]

Programming-based Approach

A program is a formal model ...
e precisely model every detail of the system
e pased on the semantics of the programming language

Programming-based Approach

A program is a formal model ...
e precisely model every detail of the system
e pased on the semantics of the programming language

... that can be executed and verified
e tests / simulations
e gutomated verification tools

Programming-based Approach

A program is a formal model ...
e precisely model every detail of the system
¢ pased on the semantics of the programming language

... that can be executed and verified
e tests / simulations

e gutomated verification tools

Which programming language?

Synchronous Languages

Domain specific languages for reactive systems

A synchronous program executes in a succession of discrete steps
The programmer writes high-level specifications: stream functions a la Lustre

Based on discrete logical time, they offer:
e Mathematically precise semantics

e Efficient and reliable code generation

e Dedicated verification tools

Synchronous Languages

Domain specific languages for reactive systems

A synchronous program executes in a succession of discrete steps
The programmer writes high-level specifications: stream functions a la Lustre

Based on discrete logical time, they offer:

e Mathematically precise semantics Qoade/Lustre ie routingl
e Efficient and reliable code generation J

e Dedicated verification tools uged in the industry

Synchronous Languages

Domain specific languages for reactive systems

A synchronous program executes in a succession of discrete steps
The programmer writes high-level specifications: stream functions a la Lustre

Based on discrete logical time, they offer:

e Mathematically precise semantics Qoade/Lustre ie routingl
e Efficient and reliable code generation J

e Dedicated verification tools uged in the industry

|deal framework to study quasi-periodic systemg

Synchronous Languages

Domain specific languages for reactive systems

A synchronous program executes in a succession of discrete steps
The programmer writes high-level specifications: stream functions a la Lustre

Based on discrete logical time, they offer:
e Mathematically precise semantics

e Efficient and reliable code generation

e Dedicated verification tools

Scade/Lugtre ie routinely
used in the industry

|deal framework to study quasi-periodic systemg

However for quasi-periodic systems:

¢ Multiple synchronous programs execute in parallel

e [hey are not synchronized

e [he architecture is characterized by real-time parameters

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max)
and z = up(x)

and present z — do emit c done

8 http://zelus.di.ens.fr

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where
rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max)
and z = up(x)
and present z — do emit c done

4 R

XL
A

_Tmin N S

Ty uuse |reeeeeses e

8 http://zelus.di.ens.fr

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where

rec der x = 1

.0 1init -. arbitrary(t_min, t_max)

reset z — -. arbitrary(t_min, t_max)

and z = up(x)
and present z

— do emit c¢ done

~

X

A

_Tmin

- Tmax

http://zelus.di.ens.fr

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where

rec der x = 1

reset z — -. arbitrary(t_min, t_max) dx/df==l'

and z = up(x)

.0 init -. arbitrary(t_min, t_max)

and present z — do emit c done

time elapsing

- Tmax

_Tmin)

~

http://zelus.di.ens.fr

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where

rec der x = 1

reset z — -. arbitrary(t_min, t_max) dx/df==l'

and 'z = up(x)

.0 1nit -. arbitrary(t_min, t_max)

and present z — do emit c done

time elapsing

- Tmax

_Tmin)

~

http://zelus.di.ens.fr

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where

rec der x = 1

reset z — -. arbitrary(t_min, t_max) dx/df==l'

and z = up(x)

.0 1nit -. arbitrary(t_min, t_max)

and present z — do emit ¢ done

time elapsing

- Tmax

_Tmin)

~

http://zelus.di.ens.fr

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where

rec der x = 1

reset z — -. arbitrary(t_min, t_max) dx/df==l'

and z = up(x)

.0 1nit -. arbitrary(t_min, t_max)

and present z — do emit ¢ done

time elapsing

- Tmax

_Tmin)

~

http://zelus.di.ens.fr

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max) T :
and Z = up(x) dx/dt =1: time elapging

and present z — do emit c done

4 R

_Tmin)

_Tmax -

8 http://zelus.di.ens.fr

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max) Y :
and Z = up(x) dx/dt =1: time elapging

and present z — do emit c done

4 R

_Tmin)

_Tmax -

8 http://zelus.di.ens.fr

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max) Y :
and Z = up(x) dx/dt =1: time elapging

and present z — do emit c done

4 R

_Tmin)

_Tmax -

8 http://zelus.di.ens.fr

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max) Y :
and 2 = up(x) dx/dt =1: time elapging

and present z — do emit c done

8 http://zelus.di.ens.fr

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max)
and z = up(x)

and present z — do emit c done

Discrete controllers are activated on signal emissions

let hybrid rt_controller(sensorl, sensor2) = o where
rec ¢c1 = metro(t_min, t_max)
and c2 = metro(t_min, t_max)
and present ¢c1 — do emit cmdl = fgs(sensorl) done
and present c2 — do emit cmd2 = fgs(sensor2) done
and cmd = 1f switch then cmdl else cmd?2

dx/dt =1: time elapging

http://zelus.di.ens.fr

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max) Y :
and Z = up(x) dx/dt =1: time elapging

and present z — do emit c done

Discrete controllers are activated on signal emissions

let hybrid rt_controller(sensorl, sensor2) = o where
rec ¢c1 = metro(t_min, t_max)
and c2 = metro(t_min, t_max)
and present c1 — do emit cmdl = fgs(sensor1) done
and present c2 — do emit cmd2 = fgs(sensor2) done
and cmd = 1f switch then cmdl else cmd?2

Degign digerete controllers and the real-time architecture
in the very same language.

8 http://zelus.di.ens.fr

Zélus: Lustre + ODEs

A synchronous language extended with continuous time

Continuous-time dynamics of the architecture simulated with ODES

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max)
and z = up(x)

and present z — do emit c done

Discrete controllers are activated on signal emissions

let hybrid rt_controller(sensorl, sensor2) = o where
rec ¢c1 = metro(t_min, t_max)
and c2 = metro(t_min, t_max)
and present c1 — do emit cmdl = fgs(sensor1) done
and present c2 — do emit cmd2 = fgs(sensor2) done
and cmd = 1f switch then cmdl else cmd?2

dx/dt =1: time elapging

Same approach in
Ptolemy

Qimulink

Degign digerete controllers and the real-time architecture

in the very same language.

http://zelus.di.ens.fr

Contributions

Verification

Verifying safety properties of
quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on
quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of
quasi-periodic systems

Symbolic Simulation

Contributions

Verification

Verifying safety properties of
quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on
quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of
quasi-periodic systems

Symbolic Simulation

Abgtraction i¢ not gound in general
Bive exact conditions of application
(Beneralization to multirate aystems

Contributions

Verification

Verifying safety properties of
quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on
quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of
quasi-periodic systems

Symbolic Simulation

Abgtraction i¢ not gound in general
Bive exact conditions of application
(Beneralization to multirate aystems

Unified eynchronoug framework
E xecutable gpecifications
Correctnesg proofe
Optimizationg and comparigong

Contributions

Verification

Verifying safety properties of
quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on
quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of
quasi-periodic systems

Symbolic Simulation

Abgtraction i¢ not gound in general
Bive exact conditions of application
(Beneralization to multirate aystems

Unified eynchronoug framework
E xecutable gpecifications
Correctnesg proofe
Optimizations and comparisong

Z6lug extended with timed nondeterminiem
Symbolic gimulation

Modular gource-to-gource compilation
Prototype implementation

Overview

Verification
Verifying safety properties of
quasi-periodic systems

Quasi-Synchronous Abstraction

Contributions

Abgtraction ie not sound in general
Bive exact conditiong of application
(Beneralization to multirate gystemg

10

Overview

Verification L) VERIMAG

entre Equation
2 avenue de Vignate
sssssssssss

Tel. 4334766348 48

Verifying safety properties of
quasi-periodic systems

Quasi-Synchronous Abstraction B

Crrisys draft

October 2000

Contributions
Abgtraction ie not sound in general

Bive exact conditiong of application

(Beneralization to multirate gystemg

Indugtrial practices observed at Airbug

10 [Cas00]

Overview

Verification
Verifying safety properties of
quasi-periodic systems

Quasi-Synchronous Abstraction

Contributions

Abgtraction ie not sound in general
Bive exact conditiong of application
(Beneralization to multirate gystemg

[HMOB, JHRO8, BMY+14, LS14, LGS15, BMY+15]

10

U VERIMI:\G

eeeeeeeeee

VerimagO8
DAQCI4
Memocodel4
L = N——
Air Foree!5

L LN L D B H
d l‘r]
TN &
WEHPCATON D E A

RTINS

Indugtrial practices observed at Airbug

[Cas00]

Overview

Verification
Verifying safety properties of
quasi-periodic systems

Quasi-Synchronous Abstraction

Contributions

Abgtraction ie not sound in general
Bive exact conditiong of application
(Beneralization to multirate gystemg

[HMOB, JHRO8, BMY+14, LS14, LGS15, BMY+15]

10

[s the abstraction sound?

U VERIMI:\G

eeeeeeeeee

VerimagO8
DAQCI4
Memocodel4
Memocodel> e
Air Foree!5 L

SATYINS

Indugtrial practices observed at Airbug

[Cas00]

T'A

A

O < Tmln § TAjTB S Tmax

O < Tmin

TA

< T4, TB < Tmax

The Big Picture

1B

<

TB

-

B

< NS/

Real-time Model (RT)

11

The Big Picture

O < Tmln S TA)TB S Tmax

0 < Tmin S TA,TB S Tmax
TA TB

TA

-

A B

TB

> NS/

Real-time Model (RT)

scheduler
CA CB
A
A ® o o
B o ® ®
Diacrete-time Model (OT)

11

The Big Picture

0 < Tmin S TAaTB S Tmax
0 < Tmin < TA,TB < Tmax scheduler
T Tg cA
= \i
>
A B A
TB
< <
SN/
B B ® ® o
Real-time Model (RT) Digerete-time Mode
RT = o & DT |= o

Qoundnegs

11

The Big Picture

O < Tmln § TAjTB S Tmax
0 < Tmin S TA,TB S Tmax

T'A

TA

Ip

A

-

B

TB

> NS/

Real-time Model (RT)

RT

Why discretize?

scheduler
CA CB
A B
A o o o
B o ® ®
Digcrete-time Model (OT)

/
N

:SQ<

Qoundnegs

Verification in a simpler discrete-time model

Use discrete-time model checking tools (Lesar-Verimag, Kind2-Ulowa)

MiI83, BSO1, HBO2, GG03a, GGO3b, HMOG]

11

Dr

— ¢

[HLR92, CMST16]

Abstracting Real Time

Abgtracting execution time

Abstracting Real Time

12

Abgtracting execution time

Abstracting Real Time

12

Abstracting Real Time

Abgtracting execution time

12

Abgtracting execution time

Abstracting Real Time

12

Abgtracting execution time

Abstracting Real Time

13

Abgtracting execution time
Abgtracting communication

Abstracting Real Time

13

Abstracting Real Time

Abgtracting execution time
Abgtracting communication

13

Abstracting Real Time

Abgtracting execution time
Abgtracting communication

13

Abstracting Real Time

Abstracting execution time Problems:
Abgtracting communication -+ Lots of possible inferleavinge
+ Too general
@ O >
o O O >

13

Abstracting Real Time

Abgtracting execution time Problems:
Abstracting communication - Lote of pogible interleavingg
+ Too general
@ O >
@ @ O >
® @ >

Can we do better uging real-time agsumptiong?

T — e ———
13

The Quasi-Synchronous Abstraction

Focus on 'almost' synchronous architectures with fast transmissions

‘[t i not the cage that a component process executes
more than twice between two succesgive executions
of another process.”

14

The Quasi-Synchronous Abstraction

Focus on 'almost' synchronous architectures with fast transmissions

‘[t i not the cage that a component process executes
more than twice between two succesgive executions
of another process.”

Reduce the state-space in two ways:

14

The Quasi-Synchronous Abstraction

Focus on 'almost' synchronous architectures with fast transmissions

‘[t i not the cage that a component process executes
more than twice between two succesgive executions
of another process.”

Reduce the state-space in two ways:

1. Transmissions as unit delays
(one step of the logical clock)

@ o >

14

The Quasi-Synchronous Abstraction

Focus on 'almost' synchronous architectures with fast transmissions

‘[t i not the cage that a component process executes
more than twice between two succesgive executions
of another process.”

Reduce the state-space in two ways:
1. Transmissions as unit delays

(one step of the logical clock)

@< @ >

\

14

The Quasi-Synchronous Abstraction

Focus on 'almost' synchronous architectures with fast transmissions

‘[t i not the cage that a component process executes
more than twice between two succesgive executions
of another process.”

Reduce the state-space in two ways:

1. Transmissions as unit delays
(one step of the logical clock)

@< @- >

UREN)

14

The Quasi-Synchronous Abstraction

Focus on 'almost' synchronous architectures with fast transmissions

‘[t i not the cage that a component procegs executeg
more than twice between two succesgive executiong
of another process.”

Reduce the state-space in two ways:

1. Transmissions as unit delays
(one step of the logical clock)

@< @- >

UREN)

O - >

Replace trangmiggion with precedence

14

The Quasi-Synchronous Abstraction

Focus on 'almost' synchronous architectures with fast transmissions

‘[t i not the cage that a component procegs executeg

more than twice between two cueceggive executiong

of another process.”

Reduce the state-space in two ways:

1. Transmissions as unit delays
(one step of the logical clock)

@< @< >

MRER

O o >

Replace trangmiggion with precedence

2. Limit activation interleavings
A process ig at mogt twice ag fagt ag another

14

The Quasi-Synchronous Abstraction

Focus on 'almost’ synchronous architectures with fast transmissions

[s this abstraction sound?

*—

Reduce the state-space in two ways:

1. Transmissions as unit delays 2. Limit activation interleavings
(one step of the logical clock) A process ig at most twice ag fagt ag another
.\\/ ’\X > o0 o0 >
» - > O ® o——

Replace trangmiggion with precedence

14

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
e Always possible if trangmisgiong

Tmax are not Ingtantaneoug

Tmax

15

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
e Always possible if trangmisgiong

Tmax are not Ingtantaneoug

Tmax

15

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
e Always possible if trangmisgiong

Tmax are not Ingtantaneoug

Tmax

a)
Qo >
®
O >

15

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
e Always possible if trangmisgiong

Tmax are not Ingtantaneoug

Tmax

a)
Qo P
’ -
U/

15

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
e Always possible if trangmisgiong

Tmax are not Ingtantaneoug

Tmax

&
X

15

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit delays

Theorem: A real-time model with more than two processes is, in
general, not unitary discretizable.

>
Tmax
o Always possible if trangmisgiong

Tinax are not Ingtantaneous
Tmax
>

4) 4)
» > 9o >
210V, il
> >

& Y _ y

15

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit delays

Theorem: A real-time model with more than two processes is, in
general, not unitary discretizable.

>
Tmax
o Always possible if trangmisgiong

Tinax are not Ingtantaneous
Tmax
>

4) 4)
» > 9o >
210V, o
> o

& Y _ y

15

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit delays

Theorem: A real-time model with more than two processes is, in
general, not unitary discretizable.

>
Tmax
o Always possible if trangmisgiong

Tinax are not Ingtantaneous
Tmax
>

4) 4)
O > >
HEx et
> o

& Y _ y

15

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit delays

Theorem: A real-time model with more than two processes is, in
general, not unitary discretizable.

>
Tmax
o Always possible if trangmisgiong

Tmax are not Ingtantaneoug

Tmax

15

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit delays

Theorem: A real-time model with more than two processes is, in
general, not unitary discretizable.

>
Tmax
Some traceg are not captured o Always possible if trangmisgiong

by the digerete abgtraction Tinax are not ingtantaneoug

Tmax

15

Trace Graph

Gather all contraints on a unitary discretization f in a weighted graph

After reception Before reception
vy = f(2) < fy) vy = f(z) < fy)
X X

- ==

Y Y

16

Trace Graph

Gather all contraints on a unitary discretization f in a weighted graph

After reception Before reception
vy = f(2) < fy) vy = f(z) < fy)
X X
\ > o >
*— Q/ -
Y Y

Lemma: A trace is unitary discretizable if
and only if there are no cycle of positive
weight in the associated trace graph.

Definition: A real-time model is unitary
discretizable if all possible traces are
unitary discretizable.

16

Trace Graph

Gather all contraints on a unitary discretization f in a weighted graph

After reception Before reception
vy = f(2) < fy) vy = f(z) < fy)
X X
\ > o >
*— Q/ -
Y Y

Lemma: A trace is unitary discretizable if
and only if there are no cycle of positive

weight in the associated trace graph. \ >
9 >

Definition: A real-time model is unitary Tmax
discretizable if all possible traces are T R

unitary discretizable.

16

Trace Graph

Gather all contraints on a unitary discretization f in a weighted graph

After reception Before reception
vy = f(2) < fy) vy = f(z) < fy)
X X
\ > o >
*— Q/ -
Y Y

Lemma: A trace is unitary discretizable if
and only if there are no cycle of positive :

weight in the associated trace graph. /\

Definition: A real-time model is unitary
discretizable if all possible traces are
unitary discretizable.

16

Trace Graph

Gather all contraints on a unitary discretization f in a weighted graph

After reception Before reception
vy = f(2) < fy) vy = f(z) < fy)
X X
\ > o >
*— Q/ -
Y Y

Lemma: A trace is unitary discretizable if
and only if there are no cycle of positive

1
weight in the associated trace graph. /\
i

Definition: A real-time model is unitary
discretizable if all possible traces are
unitary discretizable.

16

Trace Graph

Gather all contraints on a unitary discretization f in a weighted graph

After reception Before reception
vy = f(2) < fy) vy = f(z) < fy)
X X
\ > o >
*— Q/ -
Y Y

Lemma: A trace is unitary discretizable if
and only if there are no cycle of positive :

weight in the associated trace graph. /\

Definition: A real-time model is unitary 0
discretizable if all possible traces are 0
unitary discretizable.

16

Recovering Soundness

Forbidden topologies in the static communication graph

¢ B A ¢ B A ¢ B
C C D C
cyele u-cycle balanced u-cycle

17

Recovering Soundness

Forbidden topologies in the static communication graph

> B (A : B) A ¢ B

| N/ L]

C . C D ¢ C

cyele u-cycle balanced u-cycle

17

Recovering Soundness

Forbidden topologies in the static communication graph

> B (A : B) A ¢ B
C K\ C /) D C
cyele u-cycle balanced u-cycle

can be allowed at the cost of additional timing congtraints

17

Recovering Soundness

Forbidden topologies in the static communication graph

A : B (A : B) A : B
D ¢ C . C D ¢ C
cyele u-cycle balanced u-cycle

can be allowed at the cost of additional timing congtraints

Theorem: A quasi-periodic architecture is unitary discretizable if and only if, in
the communication graph

1. All u-cycles are cycles of balanced u-cycle, or Tmax = 0, and
2. There is no balanced u-cycle, Or Tmin = Tmax, and

3. There is no cycle in the communication graph, or T > LeTmax

Lc: size of the longest elementary cycle

17

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg

Za

N\

E—D

m O O T >

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg

Za

_

—=D

m O O T >

q=3# —

p=2:% =

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

Za

_

—=D

m O O T >

q=3# —

p=2:% =

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

Za

_

—=D

m O O T >

q=3# —

p=2:% =

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p = €= (qTmax — PTmin)/q > 0
B
%" \\AA .Nriin
C ®

_

—=D

m O O T >

q=3# —

p=2:% =

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg ¢ >p = €= (¢Tmax — PTmin)/q > 0
B 1
2 N

_

—=D

m O O T >

q=3# —

p=2:% =

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg ¢ >p = €= (¢Tmax — PTmin)/q > 0
B A :
V2N N0y
N A \\
\\ / / C ®
E—/=D D
E

q=3# —

p=2:% =

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p =€ = (¢Tmax — PTmin)/q >0
B A :
2N, TN
_ e
E—=D D
E

q=3# —

p=2:% =

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg ¢ >p=>¢€ = (¢Tmax — PTmin)/q > 0
B A ‘
P
[A —
E—=D D 0/ i
E

q=3# —

p=2:% =

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

7N\

C

_

—=D

m o O W >
X—
:

q=3# —

p=2:% =

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

7N\

C

_

—D

m O O @©@ >
\—H
\]
=
?

q=3# —

p=2:% =

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

7N\

C

_

—D

m O O T >

q=3# —

p=2:% =

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

7N\

C

_/

—D

m O O T >

q=3# —

p=2:% =

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

7N\

E—=D

_J Ly

q=3# —

p=2:% =

18

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

2N

_J

m O O T >

q=3# —

. AR
p=0: —2 We built a eycle of positive weight!

18

Recovering Soundness

Proof: On the other hand, by contraposition,

19

Recovering Soundness

Proof: On the other hand, by contraposition,

PC/u-cycle

19

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle

PC/u-cycle

cycle

19

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle balanced

PC/u-cycle balanced

cycle

19

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle pbalanced =— Tmax =20

PC/u-cycle balanced

cycle

19

Recovering Soundness

Proof: On the other hand, by contraposition,

PC/u-cycle balanced

cycle

19

cycle balanced — Tmax =20 @\'

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle balanced =— Tmax =0 A\\'
RS

QP

PC/u-cycle balanced =—> Tmin < Tmax

cycle

19

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle balanced =— Tmax =0 A\\'
RS

QP

PC/u-cycle | ‘)
y balanced =—> Tmin < Tmax &

NS

cycle

19

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle balanced =— Tmax =0 A\\'
RS

QP

PC/u-cycle | ‘)
y balanced =—> Tmin < Tmax &

NS

CyC|e — Tmin > LchaX

19

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle balanced =— Tmax =0 A\\'
RS

QP

PC/u-cycle | ‘)
y balanced =—> Tmin < Tmax &

NS

19

Topology Examples

Communications of the application

A/B\O A%ﬁ?%/*
E:D/ E//\\D

/B\ N\
\\b/ \\ //

Db(g

20

N\
\ //

E——— D

Ring: Tiin

///\\\

N

Clique :

Topology Examples

Communications of the application

7N,

AN
/

A /C A— — o — — C \\ //
E—=D E——D
Uhe : Tmin > 2Tmax gfar T i n > 2Tmax ‘ng Tiin > DTmax

Mesh : Trax =0 ouble ring : Timax = 0 Clique : Tmax =0

Require ingtantaneoug communicationg

20

Quasi-Synchronous Systems

‘[t i not the cage that a component process executes
more than twice between two successive executiong
of another procesg.”

Theorem: A real-time model is quasi-synchronous if and only If,
1. It is unitary discretizable
2. 2Cz—wmin + Tmin 2 Tmax + Tmax

Tmin Tmin

Tmin
T ‘A,X
‘ max

Woret-cage gcenario

21

Multirate Systems

[t i not the cage that a component process executes
more than n times between m succesgive executiong
of another procege.”

n/m-quasi-synchrony

Theorem: A real-time model is n/m-quasi-synchronous if and only if,
1. itis unitary discretizable
2. for any pair of communicating nodes A & B

nTa 4+ > (m — 1)TB + Trax

min max
B A
nTmin + Tmin Z (m o 1)Tmax + Tmax
T4 n timeg T4 TA

A O o - O O O
o TB m timeg T8 Tmax
B Imax ‘ o _' Imax

Woret-cage ecenario

22 [SG12]

Summary

The quasi-synchronous abstraction: R
1. Model transmission as unit delays
2. Gonstrain node activations interleavings e Eee

Contributions:

e Condition 1 is not sound in general

e Notion of unitary discretization

e Exact conditions to recover soundness

e Characterization of quasi-synchronous systems
e (Generalization to multirate systems

Congtrain both the communication graph and the real-time
characterigtics of the architecture to recover goundnesg of the
quagi-gynchronous abgtraction.

23 [FMCAD 2016

Overview

Implementation

Deploying code on
quasi-periodic architectures

Loosely Time-Triggered Architectures

24

Overview

How to preserve the semantics
of the embedded application?

Implementation

Deploying code on
quasi-periodic architectures

Loosely Time-Triggered Architectures

24

Overview

How to preserve the semantics
of the embedded application?

Implementation

Deploying code on EMSOFT'02
quasi-periodic architectures EMSOFT'O7

CDCO8
Loosely Time-Triggered Architectures EEE Comp 08 ...

. EMSOFT'IO

.....

......

[BCLG+02, BCDN+07, CB08, TPB+08, BBC10] 24

Overview

How to preserve the semantics

| of the embedded application?
Implementation

Deploying code on EMSOFT'02
quasi-periodic architectures EMQOFT'O7
COCO8
Loosely Time-Triggered Architectures EEE Comp 08 ...
| EMQOFT'IQWM
Contributions

Unified aynchronoug framework _(
E xecutable gpecifications =

Correctnesg proofe
Optimizationg and comparigong

[BCLG+02, BCDN+07, CB08, TPB+08, BBC10] 24

How to Preserve the Semantics?

(of an application on a quasi-periodic architecture)

25

How to Preserve the Semantics?

(of an application on a quasi-periodic architecture)

Clock synchronization
e.qg. TTA

) —>

\[E

Require dedicated hardware
and dedicated controllers

25

How to Preserve the Semantics?

(of an application on a quasi-periodic architecture)

Unsynchronized nodes
+ Middleware = LTTA

w
H
5

Lightweight alternative

25

A Synchronous Framework

Previous model; timed Petri nets

p; — 1 transitions

2 1 1 qi
i T L Wiy oy Wy
eee <—|:|<—Q<—|:| 7y
1
. . qj 1
Vj#iw; of T <
0
——] eee |] [] 0
i 1 g, —1 qi
Wi Wi Wi \/
1 q;—1
w w w w Viyenny U i

q; — 1 transitions

Help: Design the protocol
Analysis (worst case throughput)

But: Cannot be compiled/simulated
Mix real-time characteristics and discrete code

26 [BBC10, BBBC14]

A Synchronous Framework

A middleware controls the execution of the embedded application
The controller waits for new inputs and delays publications

lc

LTTA Controller im

Mealy Machine -~
om

let node ltta_node(i) = o where
rec (o, im) = ltta_controller(i, om)
and present im(v) — do emit om = machine(v) done

Shell wrapper: Latency insensitive design (LID)

27

A Synchronous Framework

A middleware controls the execution of the embedded application
The controller waits for new inputs and delays publications

Logical clock modele
“ node activation
l C
i 0
- >
. LTTA Controller im
Mealy Machine -~
om

let node ltta_node(i) = o where
rec (o, im) = ltta_controller(i, om)
and present im(v) — do emit om = machine(v) done

Shell wrapper: Latency insensitive design (LID)

27

A Synchronous Framework

A middleware controls the execution of the embedded application

The controller waits for new inputs and delays publications

8
e

ok

LTTA Controller

im

om

Mealy Machine

let node ltta_node(i) = o where
rec (o, im) = ltta_controller(i, om)

and present im(v) — do emit om = machine(v) done

\

Shell wrapper: Latency insensitive design (LID)

27

Logical clock modele
node activation

Synchronous
application

A Synchronous Framework

A middleware controls the execution of the embedded application
The controller waits for new inputs and delays publications

Controle the execution

okl

C

of the application \

-

LTTA Controller

Logical clock modele
node activation

im

om

Mealy Machine

let node ltta_node(i) = o where
rec (o, im) = ltta_controller(i, om)
and present im(v) — do emit om = machine(v) done

\

Synchronous

Shell wrapper: Latency insensitive design (LID)

27

application

A Synchronous Framework

A middleware controls the execution of the embedded application
The controller waits for new inputs and delays publications

Logical clock modele
Controls the execution “— node activation
of the application c
N 1 R o,
/) _ LTTA Controller im
Input sampled
from memorieg (linke)
Mealy Machine -~
om
\ Synehronoug

lication
let node ltta_node(i) = o where app 9

rec (o, im) = ltta_controller(i, om)
and present im(v) — do emit om = machine(v) done

Shell wrapper: Latency insensitive design (LID)

27

A Synchronous Framework

A middleware controls the execution of the embedded application
The controller waits for new inputs and delays publications

Loagical clock modelg
Controle the execution — :

node activation
ot the application C
/) LTTA Controller °

1m <
Input sampled i \

from memorieg (linke) | o
Mealy Machine | frigger apphcahOn

om
\ Synchronous

application

let node ltta_node(i) = o where
rec (o, im) = ltta_controller(i, om)
and present im(v) — do emit om = machine(v) done

Shell wrapper: Latency insensitive design (LID)

27

A Synchronous Framework

A middleware controls the execution of the embedded application
The controller waits for new inputs and delays publications

Controle the execution

okl

C

of the application \

Input sampled
from memorieg (linke)

-

LTTA Controller

Logical clock modele

node activation

—3 O

Mealy Machine

—

Application output

let node ltta_node(i) = o where
rec (o, im) = ltta_controller(i, om)

and present im(v) — do emit om = machine(v) done

\

>

im‘4—-—_.\\\\\

trigger application

Shell wrapper: Latency insensitive design (LID)

27

Synchronous
application

A Synchronous Framework

A middleware controls the execution of the embedded application
The controller waits for new inputs and delays publications

Logical clock modele
Controls the execution “— node activation

of the application c
/) 1 > 0 > OU"'pU"’
LTTA Controller '

1m <
Input sampled i \

from memorieg (linke) | o
Mealy Machine | frigger GPPIIOGﬂOH

— i \
Synchronous

Application output application

let node ltta_node(i) = o where
rec (o, im) = ltta_controller(i, om)
and present im(v) — do emit om = machine(v) done

Shell wrapper: Latency insensitive design (LID)

27

A Synchronous Framework

A middleware controls the execution of the embedded application
The controller waits for new inputs and delays publications

Controle the execution —

of the application ‘e
/ LTTA Controller

Logical clock modelg

node activation

0 &«

- Output

Input sampled "

from memorieg (linke)

Mealy Machine

—

/—) o

\

Application output

let node ltta_node(i) = o where
rec (o, im) = ltta_controller(1

im<4—-—_,\\\\\

trigger application

Synchronoug

, om)

application

Controllers are synchronous programs too!

27

EEEEEE————

A Synchronous Framework

A middleware controls the execution of the embedded application
The controller waits for new inputs and delays publications

Logical clock modelg
Controls the execution “— node activation

of the application | ¢
= i R °, Output
/ LTTA Controller > | im <«
Input sampled] \

from memorieg (linke) | o
Mealy Machine | frigger GPPIIOGfIOH

/ . \
Synchronoug

Application output application

let node ltta_node(i) = o where
rec (o, im) = ltta_controller(i, om)

Controllers are synchronous programs too!

e ——

27

The LTTA protocols

28 [TPB+08, CBO08g]

The LTTA protocols

Back-Pressure

all_inputs_fresh /

l emit im = data(i) and emit a

Ready
(*x skip *)

all_acks_fresh / emit o

1
3

let node bp_controller(i, ra, om, mi)
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh then

do emit im = data(i) and emit a in Ready
| Ready —

do (* skip *)
unless all_acks_fresh then
do emit o = m in Wait

(o, a, im) where

and all_inputs_fresh = forall_fresh(i, im, true)
and all_acks_fresh = forall_fresh(ra, o, false)

Doint-to-point communication
Acknowledgmentg

2 phages: Exec/Send

28

Inspired by elastic circuits

[TPB+08, CBO08g]

Back-Pressure

all_inputs_fresh /

l emit im = data(i) and emit a

Ready
(* skip *)

all_acks_fresh / emit o

1
3

let node bp_controller(i, ra, om, mi) = (o, a, im) where
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh then
do emit im = data(i) and emit a in Ready
| Ready —
do (* skip *)
unless all_acks_fresh then
do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)
and all_acks_fresh = forall_fresh(ra, o, false)

Boint-to-point communication

Acknowledgments
2 phageg: Exec/Send

The LTTA protocols

28

[TPB+08, CBO08g]

Back-Pressi

all_inputs_fresh /

emit im = data(i) and em

all_acks_fresh / emit o

let node bp_controller(i, ra, om, mi)
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh ther
do emit im = data(i) and e
| Ready —
do (* skip *)
unless all_acks_fresh then
do emit o = m in Wait

and all_inputs_fresh = forall_freshi
and all_acks_fresh = forall_fresh(r:

Doint-to-point communicat

Acknowledgments
2 phageg: Exec/Send

n=p—(last n-1)

The LTTA protocols

Time-Based

init n =1
l last n = 1 /emit im = data(i)

Wait Ready

n=g— (last n-1)

last n = 1 or preempted /emit o=m

let node tb_controller(i, om, mi) = (o, im) where

rec m = mem(om, mi)
and init n =1
and automaton
| Wait —
don=p — (last n - 1)
unless (last n = 1) then
do emit im = data(i) in Ready
| Ready —
don=q — (last n - 1)
unless ((last n = 1) or preempted) then
do emit o = m in Wait

and preempted = exists_fresh(i, im, true)

Broadcagt communication
Waiting mechanigmg

2 phages: Exec/Send

28

Replace acknowledgments
with timeouts

[TPB+08, CBO08g]

Back-Pressure

all_inputs_fresh /

l emit im = data(i) and emit a

Ready
(* skip *)

1
3

all_acks_fresh / emit o

let node bp_controller(i, ra, om, mi) = (o, a, im) where
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh then
do emit im = data(i) and emit a in Ready
| Ready —
do (* skip *)
unless all_acks_fresh then
do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)
and all_acks_fresh = forall_fresh(ra, o, false)

Boint-to-point communication

Acknowledgments
2 phageg: Exec/Send

The LTTA protocols

Time-Based

init n =1
l last n =1 /emit im = data(i)

Wait
n=p—(last n-1)

Ready
n=g— (last n-1)

last n = 1 or preempted /emit o=m

let node tb_controller(i, om, mi) = (o, im) where
rec m = mem(om, mi)
and init n =1
and automaton
| Wait —
don=p— (last n - 1)
unless (last n = 1) then
do emit im = data(i) in Ready
| Ready —
don=q — (last n - 1)
unless ((last n = 1) or preempted) then
do emit o = m in Wait

and preempted = exists_fresh(i, im, true)

Broadeast communication
Waiting mechanigmg

2 phageg: Exec/Send

28

[TPB+08, CBO08g]

Back-Press

all_inputs_fresh /

emit im = data(i) and e

all_acks_fresh / emit ¢

let node bp_controller(i, ra, om, mi)
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh the
do emit im = data(i) and
| Ready —
do (* skip *)
unless all_acks_fresh then
do emit o = m in Wait

and all_inputs_fresh = forall_frest
and all_acks_fresh = forall_fresh(r

Doint-to-point communica

Acknowledgments
2 phageg: Exec/Send

let node rb_controller(i, om) = (o, im) where

The LTTA protocols

Round-Based

all_inputs_fresh /

emit im = data(i)

rec automaton
| Wait —
do (x skip %)
unless all_inputs_fresh then

and all_inputs_fresh = forall_fresh(i, im, true)

and o = om

do emit im = data(i) in Wait

let node timeout(i_live) = (n < @) where

rec reset n = p fby (n - 1) every i_live

Broadeagt communication
Cragh-detectore (timeoute)
| phage: Exec + Send

28

)

Inspired by
distributed algorithms

[TPB+08, CBO08g]

Back-Pressure

all_inputs_fresh /

l emit im = data(i) and emit a

Ready
(* skip *)

all_acks_fresh / emit o = m

let node bp_controller(i, ra, om, mi) = (o, a, im) where
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh then
do emit im = data(i) and emit a in Ready
| Ready —
do (* skip *)
unless all_acks_fresh then
do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)
and all_acks_fresh = forall_fresh(ra, o, false)

Boint-to-point communication

Acknowledgmente
2 phageg: Exec/Send

The LTTA protocols

Time-Based

init n =1
l last n =1 /emit im = data(i)

Wait
n=p—(last n-1)

Ready
n=g— (last n-1)

last n = 1 or preempted /emit o=m

let node tb_controller(i, om, mi) = (o, im) where
rec m = mem(om, mi)
and init n =1
and automaton
| Wait —
don=p— (last n - 1)
unless (last n = 1) then
do emit im = data(i) in Ready
| Ready —
don=q — (last n - 1)
unless ((last n = 1) or preempted) then
do emit o = m in Wait

and preempted = exists_fresh(i, im, true)

Broadeast communication
Waiting mechanigmg

2 phageg: Exec/Send

28

Round-Based

all_inputs_fresh /

emit im = data(i)

let node rb_controller(i, om) = (o, im) where
rec automaton
| Wait —
do (* skip =*)
unless all_inputs_fresh then
do emit im = data(i) in Wait

and all_inputs_fresh = forall_fresh(i, im, true)
and o = om

let node timeout(i_live) = (n < @) where
rec reset n = p fby (n - 1) every i_live

Broadeagt communication
Cragh-detectore (timeoute)
| phage: Exec + Send

[TPB+08, CBO08g]

Back-Pressure

all_inputs_fresh /

l emit im = data(i) and emit a

Ready
(* skip *)

all_acks_fresh / emit o = m

let node bp_controller(i, ra, om, mi) = (o, a, im) where
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh then
do emit im = data(i) and emit a in Ready
| Ready —
do (* skip %)
unless all_acks_fresh then
do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)
and all_acks_fresh = forall_fresh(ra, o, false)

Boint-to-point communication
Acknowledgmente
2 phageg: Exec/Send

Architecture independent
Block if a node cragheg

The LTTA protocols

Time-Based

n=1
l last n =1 /emit im = data(i)

init

Wait
n=p—(last n-1)

Ready
n=g— (last n-1)

last n = 1 or preempted /emit o=m

let node tb_controller(i, om, mi) = (o, im) where
rec m = mem(om, mi)
and init n =1
and automaton
| Wait —
don=p— (last n - 1)
unless (last n = 1) then
do emit im = data(i) in Ready
| Ready —
don=q — (last n - 1)
unless ((last n = 1) or preempted) then
do emit o = m in Wait

and preempted = exists_fresh(i, im, true)

Broadcast communication
Waiting mechanigmg
2 phageg: Exec/Send

28

Round-Based

all_inputs_fresh /

emit im = data(i)

let node rb_controller(i, om) = (o, im) where
rec automaton
| Wait —
do (* skip =*)
unless all_inputs_fresh then
do emit im = data(i) in Wait

and all_inputs_fresh = forall_fresh(i, im, true)
and o = om

let node timeout(i_live) = (n < @) where
rec reset n = p fby (n - 1) every i_live

Broadeagt communication
Cragh-detectore (timeoute)
| phage: Exec + Send

[TPB+08, CBO08g]

Back-Pressure

all_inputs_fresh /

l emit im = data(i) and emit a

Ready
(x skip *)

all_acks_fresh / emit o = m

let node bp_controller(i, ra, om, mi) = (o, a, im) where
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh then
do emit im = data(i) and emit a in Ready
| Ready —
do (* skip %)
unless all_acks_fresh then
do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)
and all_acks_fresh = forall_fresh(ra, o, false)

Boint-to-point communication

Acknowledgmente
2 phageg: Exec/Send

Architecture independent
Block if a node cragheg

The LTTA protocols

Time-Based Round-Based

init n =1
l last n =1 /emit im = data(i)
Wait
n=p—(last n-1)

Ready al}_lhputs_fresh /
n=g—(last n-1) emit im = data(i)

last n = 1 or preempted /emit o=m

let node tb_controller(i, om, mi) = (o, im) where let node rb_controller(i, om) = (o, im) where

rec m = mem(om, mi)
and init n =1
and automaton

rec automaton
| Wait —
do (* skip =*)

| Wait — unless all_inputs_fresh then
don=p— (last n - 1) do emit im = data(i) in Wait
unless (last n = 1) then
do emit im = data(i) in Ready and all_inputs_fresh = forall_fresh(i, im, true)
| Ready — and o = om
don=q — (last n - 1)
unless ((last n = 1) or preempted) then let node timeout(i_live) = (n < @) where
do emit o = m in Wait rec reset n = p fby (n - 1) every i_live

and preempted = exists_fresh(i, im, true)

Broadeagt communication Broadeast communication

Waiting mechanigmg
2 phageg: Exec/Send

Cragh-detectors (timeoute)
| phage: Exec + Send

28

Require timing characteristics
Can run in degraded mode

[TPB+08, CBO08g]

Comparisons with clock synchronization

Zélus simulations of the FGS example
Compute slowdown compared to a synchronous execution”

E xecution period << Communication delay

Slowdown
4 A TB
3 _
BP
2 - —— —cc
1 — RB
I I I I I I I I I I I I I > JiHer (%)
1 2 3 4 5) 6 7 8 9 10 11 12 13 14 15
Global Clock: based on a master clock synchronization BP: Back-Pressure

1B: Time-Based
RB: Round-Based
GC: Global Clock

arbitrary(t_min, t_max): Random choice

*The smaller, the better

29

Comparisons with clock synchronization

Zélus simulations of the FGS example
Compute slowdown compared to a synchronous execution”

E xecution period >> Communication delay

Slowdown
5 TB
GC
4
3 _
2 BP
1 RB
' — Jitter (%)
1 2 3 4 5 § 7 8 9 10 11 12 13 1 15
Global Clock: based on a master clock synchronization BP: Back-Pressure
arbitrary(t_min, t_max): Random choice TB: Time-Based

RB: Round-Based
GC: Global Clock

*The smaller, the better 29

Summary

Lodsely Time-Triggerad Architectures:
Improvements anc Camparsons

Loosely Time-Triggered Architectures:

How to deploy synchronous code? sy o l
Add a layer of middleware = eyl

Three protocols

Contributions:

¢ Unified synchronous framework
e Executable specifications

e (Correctness proofs

e Optimization and comparisons

LT EROUC ION

LTTA are lightweight protocols to engure the correct execution
of gynchronoug code running on a quasi-periodic architecture

30 [EMSOFT 2015, ACM TECS 2016]

Overview

Simulation

Simulating the possible behaviors of
quasi-periodic systems

Symbolic Simulation

31 [BP13, BDLOG]

Overview

How to simulate

. . congtrained nondeterminism?
Simulation

Simulating the possible behaviors of
quasi-periodic systems

Symbolic Simulation

31 [BP13, BDLOG]

Overview

How to simulate

. . congtrained nondeterminism?
Simulation

Simulating the possible behaviors of
quasi-periodic systems

Zélus

Synchronous language
Continuous + Discrete
Modular compilation
Numeric solver

Symbolic Simulation

Uppaal

Timed automata
Nondeterminism
Symbolic representation

31 [BP13, BDLOG]

Overview

Simulation
Simulating the possible behaviors of
quasi-periodic systems

Symbolic Simulation

Contributions

Zélug extended with timed nondeterminiem
Symbolic cimulation

Modular gource-to-gource compilation
Prototype implementation

31

How to simulate
congtrained nondeterminism?

Zélus

Synchronous language
Continuous + Discrete
Modular compilation
Numeric solver

Uppaal

Timed automata
Nondeterminism
Symbolic representation

[BP13, BDLO6]

Timed Nondeterminism

Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

let hybrid metro(t_min, t_max) = c where
rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max)
and z = up(x)
and present z — do emit c done

Embedded application activateg on signal emiggiong

32

Timed Nondeterminism

Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

let hybrid metro(t_min, t_max) = c where
rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max)
and z = up(x)

| We only uge der x =
and present z — do emit c done

Embedded application activateg on signal emiggiong

32

Timed Nondeterminism

Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

let hybrid metro(t_min, t_max) = c where
rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max)
and z = up(x)

| We only uge der x =
and present z — do emit c done

Embedded application activateg on signal emiggiong

Zsy: Z¢élus extended with timed nondeterminism

let hybrid metro(t_min, t_max) = c where
rec timer t init @ reset c() — 0
and emit ¢ when {t > t_min}
and always {t < t_max}

32

Timed Nondeterminism

Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

let hybrid metro(t_min, t_max) = c where
rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max)
and z = up(x)

| We only uge der x =
and present z — do emit c done

Embedded application activateg on signal emiggiong

Zsy: Z¢élus extended with timed nondeterminism

let hybrid metro(t_min, t_max) = c where
rec timer t init @ reset c() — 0 < aner(ﬁwmadapghﬁﬂ
and emit ¢ when {t > t_min}
and always {t < t_max}

32

Timed Nondeterminism

Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

let hybrid metro(t_min, t_max) = c where
rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max)
and z = up(x)

| We only uge der x =
and present z — do emit c done

Embedded application activateg on signal emiggiong

Zsy: Z¢élus extended with timed nondeterminism

let hybrid metro(t_min, t_max) = c where
rec timer t init @ reset c() — 0 < aner(ﬁwmadapghﬁﬂ
and emit ¢ when {t > t_min} <= guami@nay)
and always {t < t_max}

32

Timed Nondeterminism

Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

let hybrid metro(t_min, t_max) = c where
rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max)
and z = up(x)

| We only uge der x =
and present z — do emit c done

Embedded application activateg on signal emiggiong

Zsy: Z¢élus extended with timed nondeterminism

let hybrid metro(t_min, t_max) = c where

rec timer t init @ reset c() — 0 < aner(ﬁwmzdapghmﬂ
and emit ¢ when {t > t_min} = guamiﬁnag)
and always {t < t_max} < invariant (mugt)

32

Timed Nondeterminism

Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset 7 — -_. arbhitrarv(t min. t max)
and z = lor x = |
and pre

How to simulate such programs?

Zsy: Z¢élus extended with timed nondeterminism

let hybrid metro(t_min, t_max) = c where

rec timer t init @ reset c() — 0 < timer (time elapging)
and emit ¢ when {t > t_min} = guamiﬁnag)
and always {t < t_max} < invariant (mugt)

32

Concrete Simulation

Example: 2-node quasi-periodic architecture

71y DD

Imax ImMmax

1
Tmin

| | | | l l l
i i | i I I >

0 5 30 45 60 75 o0 time

Random testing: test one execution, using numerical solvers

33

Concrete Simulation

Example: 2-node quasi-periodic architecture

7N D

Imax ImMmax

1
Tmin

| | | | l l |
| i i | i | | >

0 5 30 45 60 75 o0 time

Random testing: test one execution, using numerical solvers

33

Concrete Simulation

Example: 2-node quasi-periodic architecture

N 7DD

Tmin ,Ilrnin
33

.

0 5 30 45 60 75 o0 time

Tmax

Random testing: test one execution, using numerical solvers

33

Concrete Simulation

Example: 2-node quasi-periodic architecture

N)N

Tmin ,Ilrnin
33

4

0 5 30 45 60 75 o0 time

Tmax

Random testing: test one execution, using numerical solvers

33

Concrete Simulation

Example: 2-node quasi-periodic architecture

N)N

Tmax max
Tmin ,Ilrnin
33 43
| | B | | o
0 5 30 45 60 75 o0 fime

Random testing: test one execution, using numerical solvers

33

Concrete Simulation

Example: 2-node quasi-periodic architecture

N 7

Tmax max
Tmin ,Ilrnin
33 43
| | B | | o
0 5 30 45 60 75 o0 fime

Random testing: test one execution, using numerical solvers

33

Concrete Simulation

Example: 2-node quasi-periodic architecture

N 7DD

Tmax max
Tmin ,-Trnin
33 43 78
S & SR S
0 5 30 45 60 75 o0 fime

Random testing: test one execution, using numerical solvers

33

Concrete Simulation

Example: 2-node quasi-periodic architecture

N 0

Can we do better than random?

Y o~ . TR

m

Tmin Tmin
33 43 78
S & SR S
O 15 30 45 60 75 90 time

Random testing: test one execution, using numerical solvers

33

Concrete Simulation

Example: 2-node quasi-periodic architecture

N 0

Can we do better than random?

m

S S

60 75 90 time

Random testing: test one execution, using numerical solvers

33

Symbolic Simulation

Example: a 2-node quasi-periodic architecture

7y DD

Imax ImMmax

1
Tmin

| | | | l l |
| i i | i | | >

0 5 30 45 60 75 o0 time

Symbolic simulation: capture multiple executions, using DBMs

34

Symbolic Simulation

Example: a 2-node quasi-periodic architecture

7y DD

max Imax

1
Tmin

| | | | l l |
| i i | i | | >

0 5 30 45 60 75 o0 time

Symbolic simulation: capture multiple executions, using DBMs

Zoneg characterized by a set of posgible choiceg

34

Symbolic Simulation

Example: a 2-node quasi-periodic architecture

7Y)

Imax ImMmax

1
Tmin

] | | | l l |
| | | | i | | >

0 5 30 45 60 75 o0 time

Symbolic simulation: capture multiple executions, using DBMs

Zoneg characterized by a set of posgible choiceg

34

Symbolic Simulation

Example: a 2-node quasi-periodic architecture

7N D

max max

1
Tmin

| | — | | —
0 5 30 45 60 75 o0 time

Symbolic simulation: capture multiple executions, using DBMs

Zoneg characterized by a set of posgible choiceg

34

Symbolic Simulation

Example: a 2-node quasi-periodic architecture

7N R

max Imax

1
Tmin

| | |
>
| | |

60 75 90 time

Symbolic simulation: capture multiple executions, using DBMs

Zoneg characterized by a set of posgible choiceg

34

Symbolic Simulation

Example: a 2-node quasi-periodic architecture

7Y R

Imax ImMmax

1
Tmin

— S:OT T4:5 ———+—

O 15 60 75 90 time

Symbolic simulation: capture multiple executions, using DBMs

Zoneg characterized by a set of posgible choiceg

34

Symbolic Simulation

Example: a 2-node quasi-periodic architecture

7N)

max Imax

1
Tmin

| | | T T | r— —
0 5 30 45 60 75 o0 time

Symbolic simulation: capture multiple executions, using DBMs

Zoneg characterized by a set of posgible choiceg

34

Symbolic Simulation

Example: a 2-node quasi-periodic architecture

7N

max Imax

1
Tmin

—— S:OT T4:5 e

O 15 60 75 90 time

Symbolic simulation: capture multiple executions, using DBMs

Zoneg characterized by a set of posgible choiceg

34

Symbolic Simulation

Example: a 2-node quasi-periodic architecture

7N R

max Imax

1
Tmin

e

O 15 60 75 90 time

Symbolic simulation: capture multiple executions, using DBMs

Zoneg characterized by a set of posgible choiceg

34

Symbolic Simulation

Example: a 2-node quasi-periodic architecture

(- & —
Simulate all posgible traces

Tmax

given a sequence of events

o U =N

1
Tmin Tmin

e

O 15 60 75 90 time

Symbolic simulation: capture multiple executions, using DBMs

Zoneg characterized by a set of posgible choiceg

34

Symbolic Runtime

Compute the succession of zones

SU

wait

o
zZCp 21 bv
> | g > >
qup ztrig > f__symb a bw
> > znext >
gu zC
gu
[1 fby .
zc
zall fby .

35

Trangition
(uger choice)

Symbolic Runtime

Compute the succession of zones

\4

f__symb

Y

21

pA0)

Y

gu

Y

Y

znext

bv

Y

bw

zC

Y

zZCp
- Zg
qup ztrig >
qu
[1 fby .
zc
zall fby .

35

Y

Trangition
(uger choice)

Symbolic Runtime

Compute the succession of zones

\4

f__symb

Y

21

Y

pA0)

gu

Y

zZCp
- Zg
qup ztrig >
qu
[1 fby .
zc
zall fby .

Y

znext

bv

Y

bw

zC

Y

35

Y

Current zone

(DBM) 4P

Symbolic Runtime

Compute the succession of zones

Traneition
(uger choice)
/ Enabled
g : 0 /Trangiﬁong
2ep W [0\
. y . \
qup ztrig > f__symb a \bw)
> > znext N_"
gu . zc
gu
[] fby . <
zall fby . |« =€
' Current zone
DBM) 4P

35

Trangition
(uger choice)

Symbolic Runtime

Compute the succession of zones

/

Source to source compilation

/ f Enabled
Z : / ° /Trangiﬁong
2ep W [0\
. y . \
qup ztrig > f__symb a \bw)
> > znext N_"
gu . zc
gu
[] fby . <
zall fby €
Current zone

(DBM) 4P

35

Trangition
(uger choice)

Symbolic Runtime

Compute the succession of zones

/

zep

gvp

ztrig

21

zQ

)

NS

[] fby .

gv 1‘
gu

zall fby .

N/

Discrete Zélug functiong
Compute the succession of zones

35

\

Source to source compilation

Enabled

/\/ Trangitiong

Current zone

(DBM) 4P

Symbolic Runtime

Compute the succession of zones

Trangition
(uger choice) /

Source to source compilation

/ f Enabled
: - / /\/Trangmong
=ep 21
gup ; ztrig \ 29 » f_symb a - \iw/)
\ ZI
(/[] fby .\< 7 / \
\) zc \
}& \ / Current zone
Orovioua atate Diccrete Zslug functiong

Compute the succession of zones

35

Source to Source Compilation

Continuous components are compiled into discrete function manipulating zones

let hybrid metro(t_min, t_max) = c where

rec timer t init @ reset ¢ — 0 _ o
and emit c when {t_min < t} Continuoug / Nondeterminigtic

and always {t < t_max}

36

Source to Source Compilation

Continuous components are compiled into discrete function manipulating zones

let hybrid metro(t_min, t_max) = c where

rec timer t init @ reset ¢ — 0 _ o
and emit c when {t_min < t} Continuoug / Nondeterminigtic

and always {t < t_max}

l

lexing
parsing

causality

typing initialization

—» symbolic

l

36

Source to Source Compilation

Continuous components are compiled into discrete function manipulating zones

let hybrid metro(t_min, t_max) = c where

rec timer t init @ reset ¢ — 0 _ o
and emit c when {t_min < t} Continuoug / Nondeterminigtic

and always {t < t_max}

l

lexing
parsing

causality

typing initialization

—» symbolic

l

let node metro_symb(t, wait, c, zg, (t_min, t_max)) = ¢, zi, za, [zs] where
rec zit = present (true fby false) — zreset(zg, t, 0)
| ¢ — zreset(zg, t, 9)
else zg
and zs = zmake({t > t_min})
and zb = zmake({t < t_max})
and za = zinterfold([zb])
and zi = if wait then (zall fby zi) else zit

36

Source to Source Compilation

Continuous components are compiled into discrete function manipulating zones

let hybrid metro(t_min, t_max) = c where

rec timer t init @ reset ¢ — 0 _ o
and emit c when {t_min < t} Continuoug / Nondeterminigtic

and always {t < t_max}

l

lexing
parsing

causality

typing initialization

—» symbolic

l

let node metro_symb(t, wait, c, zg, (t_min, t_max)) = ¢, zi, za, [zs] where
rec zit = present (true fby false) — zreset(zg, t, 0)
| ¢ — zreset(zg, t, 9)

else zg
and zs = zmake({t > t_min}) Digcrete / Determinigtic
and zb = zmake({t < t_max}) i
and za = zinterfold([zb]) “Aan%nﬂGHZZOHQQ

d zi = if wait th 11 fby zi) el 1t it
and zi = if wait then (zall fby zi) else zi Trangitiong controlled by the uger

36

Prototype Implementation

let hybrid metro(t_min, t_max) = c where
rec timer t init @ reset c() — 0
and emit ¢ when {t > t_min}
and always {t < t_max}

let hybrid archi(t_min, t_max) = c1, c2 where

rec cl = metro(t_min, t_max)
and c2 = metro(t_min, t_max)

37

Prototype Implementation

let hybrid metro(t_min, t_max) = c where
rec timer t init @ reset c() — ©
and emit ¢ when {t > t_min}

and always {t < t_max} zeluc -symb archi gpa.zls

let hybrid archi(t_min, t_max) = c1, c2 where
rec ¢l = metro(t_min, t_max)
and c2 = metro(t_min, t_max)

let node metro_symb(t, wait, c, zg, (t_min, t_max)) = c, zi, za, [zs] where
rec zit = present (true fby false) — zreset(zg, t, 0)
| ¢ — zreset(zg, t, 0)
else zg
and zs = zmake({t > t_min})
and zb = zmake({t < t_max})
and za = zinterfold([zbl])
and zi = if wait then (zall fby zi) else zit

let node archi_symb((t1, t2), wait, (c1, c2), zg, (t_min, t_max)) =
(c1', c2'), zi, za, gvl @ gv2 where
rec c1', zi1, zal, gvl = metro_symb(t1, wait, c1, zg, (t_min, t_max))
and c2', zi2, za2, gv2 = metro_symb(t2, wait, c2, zil, (t_min, t_max))
and za = zinterfold([zal; za2])
and zi = if wait then (zall fby zi) else zi2

(**x* Runtime **x%)
let node archi(wait, (c1, c2), (t_min, t_max)) = (c1', c2'), bv, bw, zc where
rec zg = ztrig([cl; c2], zcp, gvp)
and (c1', c2'), zi, za, gv = archi_symb((1, 2), wait, (cl1, c2), zg, (t_min, t_max))
and zc, bv, bw = znext(wait, zi, za, gv)
and zcp = zall fby zc
and gvp = [] fby gv

37

Prototype Implementation

let hybrid metro(t_min, t_max) = c where
rec timer t init @ reset c() — ©
and emit ¢ when {t > t_min}

and always {t < t_max} zeluc -symb archi gpa.zls

let hybrid archi(t_min, t_max) = c1, c2 where
rec ¢l = metro(t_min, t_max)
and c2 = metro(t_min, t_max)

let node metro_symb(t, wait, c, zg, (t_min, t_max)) = c, zi, za, [zs] where
rec zit = present (true fby false) — zreset(zg, t, 0)
| ¢ — zreset(zg, t, 0)
else zg
and zs = zmake({t > t_min})
and zb = zmake({t < t_max})
and za = zinterfold([zbl])
and zi = if wait then (zall fby zi) else zit

let node archi_symb((t1, t2), wait, (c1, c2), zg, (t_min, t_max)) =
(c1', c2'), zi, za, gvl @ gv2 where
rec c1', zi1, zal, gvl = metro_symb(t1, wait, c1, zg, (t_min, t_max)) Ze].UC qpa_run.zls
and c2', zi2, za2, gv2 = metro_symb(t2, wait, c2, zil, (t_min, t_max))
and za = zinterfold([zal; za2])
and zi = if wait then (zall fby zi) else zi2

(**x* Runtime **x%)
let node archi(wait, (c1, c2), (t_min, t_max)) = (c1', c2'), bv, bw, zc where
rec zg = ztrig([cl; c2], zcp, gvp)
and (c1', c2'), zi, za, gv = archi_symb((1, 2), wait, (cl1, c2), zg, (t_min, t_max))
and zc, bv, bw = znext(wait, zi, za, gv)
and zcp = zall fby zc
and gvp = [] fby gv

37

Conclusion

Verification

Verifying safety properties of
quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on
quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of
quasi-periodic systems

Symbolic Simulation

38

Conclusion

Verification

Verifying safety properties of
quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on
quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of
quasi-periodic systems

Symbolic Simulation

38

Abgtraction i¢ not gound in general
Bive exact conditions of application
(Beneralization to multirate aystems

Conclusion

Verification

Verifying safety properties of
quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on
quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of
quasi-periodic systems

Symbolic Simulation

38

Abgtraction i¢ not gound in general
Bive exact conditions of application
(Beneralization to multirate aystems

Unified eynchronoug framework
E xecutable gpecifications
Correctnesg proofe
Optimizationg and comparigong

Conclusion

Verification

Verifying safety properties of
quasi-periodic systems

The Quasi-Synchronous Abstraction

Implementation

Deploying code on
quasi-periodic architectures

Loosely Time-Triggered Architectures

Simulation

Simulating the possible behaviors of
quasi-periodic systems

Symbolic Simulation

38

Abgtraction i¢ not gound in general
Bive exact conditions of application
(Beneralization to multirate aystems

Unified eynchronoug framework
E xecutable gpecifications
Correctnesg proofe
Optimizations and comparisong

Z6lug extended with timed nondeterminiem
Symbolic gimulation

Modular gource-to-gource compilation
Prototype implementation

Open Questions

Real-time requirements

LT TAs preserve the semantics at the cost of additional latency
Not acceptable for all applications (emergency button)

What is the impact of these delays on the application?

39

Open Questions

Real-time requirements
LT TAs preserve the semantics at the cost of additional latency

Not acceptable for all applications (emergency button)
What is the impact of these delays on the application?

Characterizing robust applications
Some applications are already robust to sampling artifacts (3-voters)

How to check this property on a given application?
What is the impact of the sampling artifacts on the semantics”?

39

Open Questions

Real-time requirements

LT TAs preserve the semantics at the cost of additional latency
Not acceptable for all applications (emergency button)

What is the impact of these delays on the application?

Characterizing robust applications

Some applications are already robust to sampling artifacts (3-voters)
How to check this property on a given application?

What is the impact of the sampling artifacts on the semantics”?

Zélus in a proof assistant
Formalization of a the semantics mixing discrete and continuous time
Prove properties involving real-time specifications (Time-Based LT TA)

39

Open Questions

Real-time requirements

LT TAs preserve the semantics at the cost of additional latency
Not acceptable for all applications (emergency button)

What is the impact of these delays on the application?

Characterizing robust applications

Some applications are already robust to sampling artifacts (3-voters)
How to check this property on a given application?

What is the impact of the sampling artifacts on the semantics”?

Zélus in a proof assistant
Formalization of a the semantics mixing discrete and continuous time
Prove properties involving real-time specifications (Time-Based LT TA)

Model checking

Explore all possible simulation choices (symbolic simulation)

Reuse existing technique for model checking timed systems (Uppaal)
Model check the generated code with Kind2 and Lesar

39

[EMSOFT'13]

[FARM'13]

[EMSOFT'15]

[TECS'16]

[FMCAD'16]

[JFLA'17]

[Submitted]

A Synchronous Embedding of Antescofo, a Domain-Specific Language for
Interactive Mixed Music, with Florent Jacquemard, Louis Mandel, and Marc Pouzet
International Conference on Embedded Software (EMSOFT) 2013

Programming Mixed-Music in ReactiveML,
with Louis Mandel and Marc Pouzet
ICFP Workshop on Functional Art, Music, Modeling and Design (FARM) 2013

Loosely Time-Triggered Architectures: Improvements and Comparisons,
with Timothy Bourke and Albert Benveniste
International Conference on Embedded Software (EMSOFT) 2015

Loosely Time-Triggered Architectures: Improvements and Comparisons,
with Timothy Bourke and Albert Benveniste
ACM Transaction on Embedded Computing Systems (TECS) 2016

Soundness of the Quasi-Synchronous Abstraction,
with Timothy Bourke and Marc Pouzet
International Conference on Formal Methods in Computer-Aided Design (FMCAD) 2016

CloudLens, un langage de script pour I'analyse de données semi-structuréees
with Louis Mandel, Olivier Tardieu, and Mandana Vaziri
Journées Francophone des Langages Applicatifs (JFLA) 2017

CloudLens, a scripting language for semi-structured data
with Louis Mandel, Olivier Tardieu, and Mandana Vaziri

40

41

