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Domain specific languages for reactive systems

A synchronous program executes in a succession of discrete steps
The programmer writes high-level specifications: stream functions a la Lustre

Based on discrete logical time, they offer:
e Mathematically precise semantics

e Efficient and reliable code generation

e Dedicated verification tools

Scade/Lugtre ie routinely
used in the industry

|deal framework to study quasi-periodic systemg

However for quasi-periodic systems:

¢ Multiple synchronous programs execute in parallel

e [hey are not synchronized

e [he architecture is characterized by real-time parameters
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Abstracting Real Time

Abgtracting execution time Problems:
Abstracting communication - Lote of pogible interleavingg
+ Too general
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The Quasi-Synchronous Abstraction

Focus on 'almost’ synchronous architectures with fast transmissions

[s this abstraction sound?

*—

Reduce the state-space in two ways:

1. Transmissions as unit delays 2. Limit activation interleavings
(one step of the logical clock) A process ig at most twice ag fagt ag another
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Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit delays

Theorem: A real-time model with more than two processes is, in
general, not unitary discretizable.
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Trace Graph

Gather all contraints on a unitary discretization f in a weighted graph
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Recovering Soundness

Forbidden topologies in the static communication graph

A : B (A : B) A : B
D ¢ C . C D ¢ C
cyele u-cycle balanced u-cycle

can be allowed at the cost of additional timing congtraints

Theorem: A quasi-periodic architecture is unitary discretizable if and only if, in
the communication graph

1. All u-cycles are cycles of balanced u-cycle, or Tmax = 0, and
2. There is no balanced u-cycle, Or Tmin = Tmax, and

3. There is no cycle in the communication graph, or T > LeTmax

Lc: size of the longest elementary cycle

17



Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example
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Proof: If there is a u-cycle, construction of a counter-example
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Topology Examples

Communications of the application

A/B\O A%ﬁ?%/*
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Db(g
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Topology Examples

Communications of the application

7N,

AN
/

A /C A— — o — — C \\ //
E—=D E——D
Uhe : Tmin > 2Tmax gfar T i n > 2Tmax ‘ng Tiin > DTmax

Mesh : Trax =0 ouble ring : Timax = 0 Clique : Tmax =0

Require ingtantaneoug communicationg
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Quasi-Synchronous Systems

‘[t i not the cage that a component process executes
more than twice between two successive executiong
of another procesg.”

Theorem: A real-time model is quasi-synchronous if and only If,
1. It is unitary discretizable
2. 2Cz—wmin + Tmin 2 Tmax + Tmax

Tmin Tmin

Tmin
T ‘A,X
‘ max

Woret-cage gcenario

21



Multirate Systems

[t i not the cage that a component process executes
more than n times between m succesgive executiong
of another procege.”

n/m-quasi-synchrony

Theorem: A real-time model is n/m-quasi-synchronous if and only if,
1. itis unitary discretizable
2. for any pair of communicating nodes A & B

nTa 4+ > (m — 1)TB + Trax

min max
B A
nTmin + Tmin Z (m o 1)Tmax + Tmax
T4 n timeg T4 TA

A O o - O O O
o TB m timeg T8 Tmax
B Imax ‘ o _' Imax

Woret-cage ecenario

22 [SG12]



Summary

The quasi-synchronous abstraction: R
1. Model transmission as unit delays
2. Gonstrain node activations interleavings e Eee

Contributions:

e Condition 1 is not sound in general

e Notion of unitary discretization

e Exact conditions to recover soundness

e Characterization of quasi-synchronous systems
e (Generalization to multirate systems

Congtrain both the communication graph and the real-time
characterigtics of the architecture to recover goundnesg of the
quagi-gynchronous abgtraction.

23 [FMCAD 2016



Overview

Implementation

Deploying code on
quasi-periodic architectures

Loosely Time-Triggered Architectures
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Overview

How to preserve the semantics

| of the embedded application?
Implementation

Deploying code on EMSOFT'02
quasi-periodic architectures EMQOFT'O7
COCO8
Loosely Time-Triggered Architectures EEE Comp 08 ...
| EMQOFT'IQWM
Contributions

Unified aynchronoug framework _(
E xecutable gpecifications =

Correctnesg proofe
Optimizationg and comparigong

[BCLG+02, BCDN+07, CB08, TPB+08, BBC10] 24



How to Preserve the Semantics?

(of an application on a quasi-periodic architecture)
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How to Preserve the Semantics?

(of an application on a quasi-periodic architecture)

Clock synchronization
e.qg. TTA

) —>

\[E

Require dedicated hardware
and dedicated controllers

25



How to Preserve the Semantics?

(of an application on a quasi-periodic architecture)

Unsynchronized nodes
+ Middleware = LTTA

w
H
5

Lightweight alternative

25



A Synchronous Framework

Previous model; timed Petri nets

p; — 1 transitions

2 1 1 qi
i T L Wiy oy Wy
eee <—|:|<—Q<—|:| 7y
1
. . qj 1
Vj#iw; of T <
0
——] eee | ] [ ] 0
i 1 g, —1 qi
Wi Wi Wi \/
1 q;—1
w w w w Viyenny U i

q; — 1 transitions

Help: Design the protocol
Analysis (worst case throughput)

But: Cannot be compiled/simulated
Mix real-time characteristics and discrete code

26 [BBC10, BBBC14]



A Synchronous Framework

A middleware controls the execution of the embedded application
The controller waits for new inputs and delays publications

lc

LTTA Controller im

Mealy Machine -~
om

let node ltta_node(i) = o where
rec (o, im) = ltta_controller(i, om)
and present im(v) — do emit om = machine(v) done

Shell wrapper: Latency insensitive design (LID)

27
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Controle the execution
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of the application \
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node activation
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let node ltta_node(i) = o where
rec (o, im) = ltta_controller(i, om)
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A middleware controls the execution of the embedded application
The controller waits for new inputs and delays publications

Controle the execution —

of the application ‘e
/ LTTA Controller
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A Synchronous Framework

A middleware controls the execution of the embedded application
The controller waits for new inputs and delays publications

Logical clock modelg
Controls the execution “— node activation

of the application | ¢
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/ LTTA Controller > | im <«
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The LTTA protocols

Back-Pressure

all_inputs_fresh /

l emit im = data(i) and emit a

Ready
(*x skip *)

all_acks_fresh / emit o

1
3

let node bp_controller(i, ra, om, mi)
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh then

do emit im = data(i) and emit a in Ready
| Ready —

do (* skip *)
unless all_acks_fresh then
do emit o = m in Wait

(o, a, im) where

and all_inputs_fresh = forall_fresh(i, im, true)
and all_acks_fresh = forall_fresh(ra, o, false)

Doint-to-point communication
Acknowledgmentg

2 phages: Exec/Send

28

Inspired by elastic circuits

[TPB+08, CBO08g]
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3

let node bp_controller(i, ra, om, mi) = (o, a, im) where
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh then
do emit im = data(i) and emit a in Ready
| Ready —
do (* skip *)
unless all_acks_fresh then
do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)
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Boint-to-point communication

Acknowledgments
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The LTTA protocols
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Back-Pressi

all_inputs_fresh /

emit im = data(i) and em

all_acks_fresh / emit o

let node bp_controller(i, ra, om, mi)
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh ther
do emit im = data(i) and e
| Ready —
do (* skip *)
unless all_acks_fresh then
do emit o = m in Wait

and all_inputs_fresh = forall_freshi
and all_acks_fresh = forall_fresh(r:

Doint-to-point communicat

Acknowledgments
2 phageg: Exec/Send

n=p—(last n-1)

The LTTA protocols

Time-Based

init n =1
l last n = 1 /emit im = data(i)

Wait Ready

n=g— (last n-1)

last n = 1 or preempted /emit o=m

let node tb_controller(i, om, mi) = (o, im) where

rec m = mem(om, mi)
and init n =1
and automaton
| Wait —
don=p — (last n - 1)
unless (last n = 1) then
do emit im = data(i) in Ready
| Ready —
don=q — (last n - 1)
unless ((last n = 1) or preempted) then
do emit o = m in Wait

and preempted = exists_fresh(i, im, true)

Broadcagt communication
Waiting mechanigmg

2 phages: Exec/Send

28

Replace acknowledgments
with timeouts

[TPB+08, CBO08g]



Back-Pressure

all_inputs_fresh /
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1
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all_acks_fresh / emit o

let node bp_controller(i, ra, om, mi) = (o, a, im) where
rec m = mem(om, mi)
and automaton
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do emit im = data(i) and emit a in Ready
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do (* skip *)
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do emit o = m in Wait
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Boint-to-point communication

Acknowledgments
2 phageg: Exec/Send

The LTTA protocols

Time-Based

init n =1
l last n =1 /emit im = data(i)

Wait
n=p—(last n-1)

Ready
n=g— (last n-1)

last n = 1 or preempted /emit o=m

let node tb_controller(i, om, mi) = (o, im) where
rec m = mem(om, mi)
and init n =1
and automaton
| Wait —
don=p— (last n - 1)
unless (last n = 1) then
do emit im = data(i) in Ready
| Ready —
don=q — (last n - 1)
unless ((last n = 1) or preempted) then
do emit o = m in Wait

and preempted = exists_fresh(i, im, true)

Broadeast communication
Waiting mechanigmg

2 phageg: Exec/Send
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Back-Press

all_inputs_fresh /

emit im = data(i) and e

all_acks_fresh / emit ¢

let node bp_controller(i, ra, om, mi)
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh the
do emit im = data(i) and
| Ready —
do (* skip *)
unless all_acks_fresh then
do emit o = m in Wait

and all_inputs_fresh = forall_frest
and all_acks_fresh = forall_fresh(r

Doint-to-point communica

Acknowledgments
2 phageg: Exec/Send

let node rb_controller(i, om) = (o, im) where

The LTTA protocols

Round-Based

all_inputs_fresh /

emit im = data(i)

rec automaton
| Wait —
do (x skip %)
unless all_inputs_fresh then

and all_inputs_fresh = forall_fresh(i, im, true)

and o = om

do emit im = data(i) in Wait

let node timeout(i_live) = (n < @) where

rec reset n = p fby (n - 1) every i_live

Broadeagt communication
Cragh-detectore (timeoute)
| phage: Exec + Send

28

)

Inspired by
distributed algorithms

[TPB+08, CBO08g]
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all_inputs_fresh /

l emit im = data(i) and emit a

Ready
(* skip *)

all_acks_fresh / emit o = m

let node bp_controller(i, ra, om, mi) = (o, a, im) where
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh then
do emit im = data(i) and emit a in Ready
| Ready —
do (* skip *)
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do emit o = m in Wait
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Boint-to-point communication
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init n =1
l last n =1 /emit im = data(i)

Wait
n=p—(last n-1)

Ready
n=g— (last n-1)

last n = 1 or preempted /emit o=m

let node tb_controller(i, om, mi) = (o, im) where
rec m = mem(om, mi)
and init n =1
and automaton
| Wait —
don=p— (last n - 1)
unless (last n = 1) then
do emit im = data(i) in Ready
| Ready —
don=q — (last n - 1)
unless ((last n = 1) or preempted) then
do emit o = m in Wait

and preempted = exists_fresh(i, im, true)

Broadeast communication
Waiting mechanigmg

2 phageg: Exec/Send

28

Round-Based

all_inputs_fresh /

emit im = data(i)

let node rb_controller(i, om) = (o, im) where
rec automaton
| Wait —
do (* skip =*)
unless all_inputs_fresh then
do emit im = data(i) in Wait

and all_inputs_fresh = forall_fresh(i, im, true)
and o = om

let node timeout(i_live) = (n < @) where
rec reset n = p fby (n - 1) every i_live

Broadeagt communication
Cragh-detectore (timeoute)
| phage: Exec + Send

[TPB+08, CBO08g]



Back-Pressure
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Architecture independent
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l last n =1 /emit im = data(i)
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Wait
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don=q — (last n - 1)
unless ((last n = 1) or preempted) then
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Broadcast communication
Waiting mechanigmg
2 phageg: Exec/Send
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Round-Based

all_inputs_fresh /

emit im = data(i)

let node rb_controller(i, om) = (o, im) where
rec automaton
| Wait —
do (* skip =*)
unless all_inputs_fresh then
do emit im = data(i) in Wait

and all_inputs_fresh = forall_fresh(i, im, true)
and o = om

let node timeout(i_live) = (n < @) where
rec reset n = p fby (n - 1) every i_live

Broadeagt communication
Cragh-detectore (timeoute)
| phage: Exec + Send
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Back-Pressure

all_inputs_fresh /

l emit im = data(i) and emit a

Ready
(x skip *)

all_acks_fresh / emit o = m

let node bp_controller(i, ra, om, mi) = (o, a, im) where
rec m = mem(om, mi)
and automaton
| Wait —
do (* skip *)
unless all_inputs_fresh then
do emit im = data(i) and emit a in Ready
| Ready —
do (* skip %)
unless all_acks_fresh then
do emit o = m in Wait

and all_inputs_fresh = forall_fresh(i, im, true)
and all_acks_fresh = forall_fresh(ra, o, false)

Boint-to-point communication

Acknowledgmente
2 phageg: Exec/Send

Architecture independent
Block if a node cragheg

The LTTA protocols

Time-Based Round-Based

init n =1
l last n =1 /emit im = data(i)
Wait
n=p—(last n-1)

Ready al}_lhputs_fresh /
n=g—(last n-1) emit im = data(i)

last n = 1 or preempted /emit o=m

let node tb_controller(i, om, mi) = (o, im) where let node rb_controller(i, om) = (o, im) where

rec m = mem(om, mi)
and init n =1
and automaton

rec automaton
| Wait —
do (* skip =*)

| Wait — unless all_inputs_fresh then
don=p— (last n - 1) do emit im = data(i) in Wait
unless (last n = 1) then
do emit im = data(i) in Ready and all_inputs_fresh = forall_fresh(i, im, true)
| Ready — and o = om
don=q — (last n - 1)
unless ((last n = 1) or preempted) then let node timeout(i_live) = (n < @) where
do emit o = m in Wait rec reset n = p fby (n - 1) every i_live

and preempted = exists_fresh(i, im, true)

Broadeagt communication Broadeast communication

Waiting mechanigmg
2 phageg: Exec/Send

Cragh-detectors (timeoute)
| phage: Exec + Send

28

Require timing characteristics
Can run in degraded mode

[TPB+08, CBO08g]



Comparisons with clock synchronization

Zélus simulations of the FGS example
Compute slowdown compared to a synchronous execution”

E xecution period << Communication delay

Slowdown
4 A TB
3 _
BP
2 - —— —cc
1 — RB
I I I I I I I I I I I I I > JiHer (%)
1 2 3 4 5) 6 7 8 9 10 11 12 13 14 15
Global Clock: based on a master clock synchronization BP: Back-Pressure

1B: Time-Based
RB: Round-Based
GC: Global Clock

arbitrary(t_min, t_max): Random choice

*The smaller, the better
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Summary

Lodsely Time-Triggerad Architectures:
Improvements anc Camparsons

Loosely Time-Triggered Architectures:

How to deploy synchronous code? sy o l
Add a layer of middleware = eyl

Three protocols

Contributions:

¢ Unified synchronous framework
e Executable specifications

e (Correctness proofs

e Optimization and comparisons

LT EROUC ION

LTTA are lightweight protocols to engure the correct execution
of gynchronoug code running on a quasi-periodic architecture

30 [EMSOFT 2015, ACM TECS 2016]
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Simulation

Simulating the possible behaviors of
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Symbolic Simulation
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Overview

Simulation
Simulating the possible behaviors of
quasi-periodic systems

Symbolic Simulation

Contributions

Zélug extended with timed nondeterminiem
Symbolic cimulation

Modular gource-to-gource compilation
Prototype implementation

31

How to simulate
congtrained nondeterminism?

Zélus

Synchronous language
Continuous + Discrete
Modular compilation
Numeric solver

Uppaal

Timed automata
Nondeterminism
Symbolic representation

[BP13, BDLO6]



Timed Nondeterminism

Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

let hybrid metro(t_min, t_max) = c where
rec der x = 1.0 init -. arbitrary(t_min, t_max)
reset z — -. arbitrary(t_min, t_max)
and z = up(x)
and present z — do emit c done

Embedded application activateg on signal emiggiong
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Timed Nondeterminism

Simulate both the embedded application and the architecture

Zélus: mix discrete-time and continuous-time dynamics expressed with ODEs

let hybrid metro(t_min, t_max) = c where

rec der x = 1.0 init -. arbitrary(t_min, t_max)

reset 7 — -_. arbhitrarv(t min. t max)
and z = lor x = |
and pre

How to simulate such programs?

Zsy: Z¢élus extended with timed nondeterminism

let hybrid metro(t_min, t_max) = c where

rec timer t init @ reset c() — 0 < timer (time elapging)
and emit ¢ when {t > t_min} = guamiﬁnag)
and always {t < t_max} < invariant (mugt)
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Concrete Simulation

Example: 2-node quasi-periodic architecture

71y DD

Imax ImMmax

1
Tmin

| | | | l l l
i i | i I I >

0 5 30 45 60 75 o0 time

Random testing: test one execution, using numerical solvers

33



Concrete Simulation

Example: 2-node quasi-periodic architecture

7N D

Imax ImMmax

1
Tmin

| | | | l l |
| i i | i | | >

0 5 30 45 60 75 o0 time

Random testing: test one execution, using numerical solvers

33



Concrete Simulation

Example: 2-node quasi-periodic architecture

N 7DD

Tmin ,Ilrnin
33

.

0 5 30 45 60 75 o0 time

Tmax

Random testing: test one execution, using numerical solvers

33



Concrete Simulation

Example: 2-node quasi-periodic architecture

N )N

Tmin ,Ilrnin
33

4

0 5 30 45 60 75 o0 time

Tmax

Random testing: test one execution, using numerical solvers

33



Concrete Simulation

Example: 2-node quasi-periodic architecture

N )N

Tmax max
Tmin ,Ilrnin
33 43
| | B | | o
0 5 30 45 60 75 o0 fime

Random testing: test one execution, using numerical solvers

33



Concrete Simulation

Example: 2-node quasi-periodic architecture

N 7

Tmax max
Tmin ,Ilrnin
33 43
| | B | | o
0 5 30 45 60 75 o0 fime

Random testing: test one execution, using numerical solvers

33



Concrete Simulation

Example: 2-node quasi-periodic architecture

N 7DD

Tmax max
Tmin ,-Trnin
33 43 78
S & SR S
0 5 30 45 60 75 o0 fime

Random testing: test one execution, using numerical solvers

33



Concrete Simulation

Example: 2-node quasi-periodic architecture
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Symbolic Simulation

Example: a 2-node quasi-periodic architecture
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Symbolic Simulation

Example: a 2-node quasi-periodic architecture

( - & —
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Symbolic Runtime

Compute the succession of zones

SU

wait

o
zZCp 21 bv
> | g > >
qup ztrig > f__symb a bw
> > znext >
gu zC
gu
[1 fby .
zc
zall fby .
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Symbolic Runtime

Compute the succession of zones
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Symbolic Runtime

Compute the succession of zones
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Source to Source Compilation

Continuous components are compiled into discrete function manipulating zones

let hybrid metro(t_min, t_max) = c where

rec timer t init @ reset ¢ — 0 _ o
and emit c when {t_min < t} Continuoug / Nondeterminigtic

and always {t < t_max}

36
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Source to Source Compilation

Continuous components are compiled into discrete function manipulating zones

let hybrid metro(t_min, t_max) = c where

rec timer t init @ reset ¢ — 0 _ o
and emit c when {t_min < t} Continuoug / Nondeterminigtic

and always {t < t_max}

l

lexing
parsing

causality

typing initialization

—» symbolic

l

let node metro_symb(t, wait, c, zg, (t_min, t_max)) = ¢, zi, za, [zs] where
rec zit = present (true fby false) — zreset(zg, t, 0)
| ¢ — zreset(zg, t, 9)
else zg
and zs = zmake({t > t_min})
and zb = zmake({t < t_max})
and za = zinterfold([zb])
and zi = if wait then (zall fby zi) else zit
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Source to Source Compilation

Continuous components are compiled into discrete function manipulating zones

let hybrid metro(t_min, t_max) = c where

rec timer t init @ reset ¢ — 0 _ o
and emit c when {t_min < t} Continuoug / Nondeterminigtic

and always {t < t_max}

l

lexing
parsing

causality

typing initialization

—» symbolic

l

let node metro_symb(t, wait, c, zg, (t_min, t_max)) = ¢, zi, za, [zs] where
rec zit = present (true fby false) — zreset(zg, t, 0)
| ¢ — zreset(zg, t, 9)

else zg
and zs = zmake({t > t_min}) Digcrete / Determinigtic
and zb = zmake({t < t_max}) i
and za = zinterfold([zb]) “Aan%nﬂGHZZOHQQ

d zi = if wait th 11 fby zi) el 1t it
and zi = if wait then (zall fby zi) else zi Trangitiong controlled by the uger
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Prototype Implementation

let hybrid metro(t_min, t_max) = c where
rec timer t init @ reset c() — 0
and emit ¢ when {t > t_min}
and always {t < t_max}

let hybrid archi(t_min, t_max) = c1, c2 where

rec cl = metro(t_min, t_max)
and c2 = metro(t_min, t_max)

37



Prototype Implementation

let hybrid metro(t_min, t_max) = c where
rec timer t init @ reset c() — ©
and emit ¢ when {t > t_min}

and always {t < t_max} zeluc -symb archi gpa.zls

let hybrid archi(t_min, t_max) = c1, c2 where
rec ¢l = metro(t_min, t_max)
and c2 = metro(t_min, t_max)

let node metro_symb(t, wait, c, zg, (t_min, t_max)) = c, zi, za, [zs] where
rec zit = present (true fby false) — zreset(zg, t, 0)
| ¢ — zreset(zg, t, 0)
else zg
and zs = zmake({t > t_min})
and zb = zmake({t < t_max})
and za = zinterfold([zbl])
and zi = if wait then (zall fby zi) else zit

let node archi_symb((t1, t2), wait, (c1, c2), zg, (t_min, t_max)) =
(c1', c2'), zi, za, gvl @ gv2 where
rec c1', zi1, zal, gvl = metro_symb(t1, wait, c1, zg, (t_min, t_max))
and c2', zi2, za2, gv2 = metro_symb(t2, wait, c2, zil, (t_min, t_max))
and za = zinterfold([zal; za2])
and zi = if wait then (zall fby zi) else zi2

(**x* Runtime **x%)
let node archi(wait, (c1, c2), (t_min, t_max)) = (c1', c2'), bv, bw, zc where
rec zg = ztrig([cl; c2], zcp, gvp)
and (c1', c2'), zi, za, gv = archi_symb((1, 2), wait, (cl1, c2), zg, (t_min, t_max))
and zc, bv, bw = znext(wait, zi, za, gv)
and zcp = zall fby zc
and gvp = [] fby gv
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and c2', zi2, za2, gv2 = metro_symb(t2, wait, c2, zil, (t_min, t_max))
and za = zinterfold([zal; za2])
and zi = if wait then (zall fby zi) else zi2

(**x* Runtime **x%)
let node archi(wait, (c1, c2), (t_min, t_max)) = (c1', c2'), bv, bw, zc where
rec zg = ztrig([cl; c2], zcp, gvp)
and (c1', c2'), zi, za, gv = archi_symb((1, 2), wait, (cl1, c2), zg, (t_min, t_max))
and zc, bv, bw = znext(wait, zi, za, gv)
and zcp = zall fby zc
and gvp = [] fby gv
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Open Questions

Real-time requirements

LT TAs preserve the semantics at the cost of additional latency
Not acceptable for all applications (emergency button)

What is the impact of these delays on the application?
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LT TAs preserve the semantics at the cost of additional latency
Not acceptable for all applications (emergency button)

What is the impact of these delays on the application?

Characterizing robust applications

Some applications are already robust to sampling artifacts (3-voters)
How to check this property on a given application?

What is the impact of the sampling artifacts on the semantics”?

Zélus in a proof assistant
Formalization of a the semantics mixing discrete and continuous time
Prove properties involving real-time specifications (Time-Based LT TA)

Model checking

Explore all possible simulation choices (symbolic simulation)

Reuse existing technique for model checking timed systems (Uppaal)
Model check the generated code with Kind2 and Lesar
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