Nested Inference for Reactive Probabilistic Programming

Guillaume Baudart

March-August 2024

Abstract

This internship will contribute to the development of ProbZelus — a reactive proba-
bilistic programming language — by adding support for nested inference to to implement
advanced controllers using, e.g., planning, or reinforcement learning.

Over the last few years, Probabilistic Programming Languages (PPL) have been intro-
duced to describe probabilistic models and automatically infer distributions of parameters
from observed data. Building on recent developments on probabilistic programming, we
have been working on ProbZelus [1]: a synchronous language extended with probabilistic
constructs. Dataflow synchronous languages are stream languages that are routinely used in
industry for the design of critical embedded systems. In ProbZelus, a program is a stream
processor which never stops, and a probabilistic model operates on infinite streams. A key
feature of ProbZelus the ability to access partial results during inference. During execution,
the inferred distribution can be used by deterministic components to compute new inputs
that can, in turn, influence the inference.

As an example, a simplified controller for a self-driving car can be programmed as follows
in ProbZelus. The driver relies on an estimation of its position to compute a command
(e.g., the steering angle) which, in turn, influences the tracker model for the estimation of
the next position.

proba tracker (u, obs) = x where
rec mu = x@ -> motion(pre x, u)
and x = sample (gaussian (mu, noise))
and () = observe (gaussian (x, noise), obs)

node driver (obs) = u where
rec x_dist = infer tracker (u, obs)
and u = u@ -> controller (mean (pre x_dist))

Using data gathered from observing the environment (e.g., obs in driver), a probabilistic
program automatically infers the distribution of unobserved parameters (e.g., the position x)
from prior beliefs (e.g., a simple Gaussian distribution) using Bayesian inference.



Nested inference [3] is the ability to nest probabilistic programming queries. This
ability is critical to model agents that can reason about other agents [2], and can be used
to implement advanced controllers using, e.g., planning, or reinforcement learning. For
instance, a Markov Decision Process continuously simulates possible future states to reach a
decision [4].

The goal of this internship is to add support for nested inference to the ProbZelus
language. Compared to previous work [3, 4] the reactive context where programs never stops
is a key challenge which needs to be addressed during this internship.

There are several possible research directions:

Language Design Add the programming language constructs for nested inference and
define their semantics.

Runtime Identify and implement probabilistic inference algorithms that can be used for
nested inference in a reactive context.

Semantics Define a framework to reason about program equivalence for models with nested
queries.

The ideal candidate should have a strong interest in programming languages (seman-
tics and implementation), and be curious about probabilistic programming and possible
applications.

Contact Guillaume Baudart guillaume.baudart@inria.fr if you have any questions, or
if you would like to apply for this internship.

References

[1] Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, and
Michael Carbin. Reactive probabilistic programming. In PLDI, 2020.

[2] Owain Evans, Andreas Stuhlmiiller, John Salvatier, and Daniel Filan. Modeling Agents
with Probabilistic Programs. http://agentmodels.org, 2017. Accessed: 2023-10-16.

[3] Tom Rainforth. Nesting probabilistic programs. In UAI pages 249-258. AUAI Press,
2018.

[4] Yizhou Zhang and Nada Amin. Reasoning about ”reasoning about reasoning”: semantics
and contextual equivalence for probabilistic programs with nested queries and recursion.
In POPL, 2022.


guillaume.baudart@inria.fr
http://agentmodels.org

