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Loosely Time-Triggered Architectures (LTTAs) are a proposal for constructing distributed embedded control
systems. They build on the quasi-periodic architecture, where computing units execute nearly periodically,
by adding a thin layer of middleware that facilitates the implementation of synchronous applications.

In this article, we show how the deployment of a synchronous application on a quasi-periodic architec-
ture can be modeled using a synchronous formalism. Then we detail two protocols, Back-Pressure LTTA,
reminiscent of elastic circuits, and Time-Based LTTA, based on waiting. Compared to previous work, we
present controller models that can be compiled for execution, a simplified version of the Time-Based protocol
and optimizations for systems using broadcast communication. We also compare the LTTA approach with
architectures based on clock synchronization.
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1. INTRODUCTION

This article is about implementing programs expressed as stream equations, like those
written in Lustre, Signal, or the discrete subset of Simulink, over networks of embedded
controllers. Since each controller is activated on its own local clock, some middleware
is needed to ensure the correct execution of the original program. One possibility is to
rely on a clock synchronization protocol as in the Time-Triggered Architecture (TTA)
[Kopetz 2011]. Another is to use less constraining protocols as in the Loosely Time-
Triggered Architecture (LTTA) [Benveniste et al. 2002, 2007; Tripakis et al. 2008; Caspi
and Benveniste 2008; Benveniste et al. 2010].

The embedded applications that we consider involve both continuous control and
discrete logic. Since the continuous layers are naturally robust to sampling artifacts,
continuous components can simply communicate through shared memory without
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additional synchronization. But the discrete logic for mode changes and similar
functionalities is sensitive to such artifacts and requires more careful coordination.
The Loosely Time-Triggered Architecture (LTTA) protocols extend communication by
sampling with mechanisms that preserve the semantics of the discrete layer. They
are simple to implement and involve little additional network communication. They
thus remain an interesting alternative to solutions based on clock synchronization
despite the undeniable advantages of the latter (like straightforward coordination,
determinism, and traceability).

Historically, there are two LTTA protocols: Back-Pressure [Tripakis et al. 2008] and
Time-Based [Caspi and Benveniste 2008]. The Back-Pressure protocol is based on
acknowledging the receipt of messages. While efficient, it introduces control dependen-
cies. The Time-Based protocol is based on a waiting mechanism. It is less efficient but
allows controllers to operate more independently.

Contributions. In this article we consolidate previous work on LTTAs [Tripakis et al.
2008; Caspi and Benveniste 2008; Benveniste et al. 2010] in a synchronous formal-
ism that uniformly encompasses both protocols and applications. Indeed, protocol con-
trollers are also synchronous programs: They can be compiled together with application
code. Any synchronous language [Benveniste et al. 2003] could be used to express the
general LTTA framework, its instantiations with specific protocols, and the applications
themselves. But we choose Zélus [Bourke and Pouzet 2013] because it also provides a
continuous model of time that allows the direct expression of timing constraints from
the underlying network architecture, giving a single, coherent, and precise model. The
timing constraints arise from the fact that controllers are activated quasi-periodically,
that is, periodically but with jitter, and because transmission delays are bounded. We
not only clarify the models and reasoning presented in previous articles (the proofs of
Theorems 5.3 and 5.4 are new) but also give a simpler version of the Time-Based pro-
tocol and optimizations for systems using broadcast communication. Finally, modern
clock synchronization protocols are now cost-effective and precise [Kopetz 2011; Lee
et al. 2005; Mills 2006; Corbett et al. 2012], raising the question: Is there really any
need for the LTTA protocols? We thus compare the LTTA protocols with approaches
based on clock synchronization.

Overview. We start with a brief introduction to Zélus, a synchronous language ex-
tended with continuous time. In Section 3, we formalize quasi-periodic architectures,
model their timing constraints in Zélus, and recall the fundamentals of synchronous
applications. Then, in Section 4, we present a general framework for modeling con-
troller networks and LTTA protocols. This framework is instantiated in Section 5 with
the two LTTA protocols, and we present optimizations for networks using broadcast
communication in Section 6. Finally, in Section 7, we compare the protocols to an
approach based on clock synchronization.

2. OVERVIEW OF ZÉLUS

Zélus [Bourke and Pouzet 2013] is a first-order dataflow synchronous language ex-
tended with Ordinary Differential Equations (ODEs) and hierarchical automata. We
present here the basic syntax of its key features.1

1More details can be found at http://zelus.di.ens.fr.
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2.1. Discrete Time

The keyword node indicates a discrete stream function. The clock of a node refers to
the sequence of its successive calls. For instance, the following function initializes a
countdown o with the value v and decrements it at each step:

where the operators pre(.), the non-initialized unit delay, and . −→., for initialization,
are from Lustre [Caspi et al. 1987]. Applying this function to the constant stream of
10s yields the execution:

v 10 10 10 10 10 10 10 10 . . .
o 10 9 8 7 6 5 4 3 . . .

The language has valued signals built and accessed through the constructs emit and
present −→ . Consider the program:

Whenever the signal i is emitted with value v, signal s is emitted with value v > 0. A
signal is absent if not explicitly emitted. If necessary, a signal can be maintained in a
memory:

The keyword init initializes a memory, that is, a variable defined at each activation
of the node, and the operator last(.) refers to its previous value.2 Each time the input
signal i is emitted, the memory m is updated with the new received value v. The unit
delay (last m) in the definition of o ensures that the output does not depend directly on
the input in any given instant. An example of an execution of this node follows.

i 3 5 7 9 . . .
mi 0 0 0 0 0 0 0 0 . . .
m 0 3 3 3 5 7 7 9 . . .
o 0 0 3 3 3 5 7 7 . . .

2The last operator thus behaves like pre for memories initialized with init.
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Complicated behaviors are often best described using automata whose defining equa-
tions at an instant are mode dependent. An automaton is a collection of states and
transitions. Consider the following example:

Starting in state Wait, the output o is defined by the equation o = false while the
condition (c = 0) is false. At the instant that this condition is true, that is, when the
countdown elapses, signal s is emitted, Elapsed becomes the active state, and the output
is thereafter defined by the equation o = true.

v 3 3 3 3 3 3 . . .
c 3 2 1 0 −1 −2 . . .
s () . . .
o false false false true true true . . .

2.2. Continuous Time

Zélus combines two models of time: discrete and continuous. Continuous time functions
are introduced by the keyword hybrid. Consider a simple periodic clock that emits a
signal every p seconds. Such a clock can be modeled in Zélus using a timer, a simple
ODE ṫ = 1, initialized to the value −p, and similarly reinitialized whenever t reaches
0.3

The variable t is initialized as described above (init −.p) and increases with slope 1.0 (der
t = 1.0). The reinitialization condition is encoded as a (rising) zero-crossing expression,
which a numeric solver monitors to detect and locate significant instants. At zero
crossing instants when the last t expression monitored by the up(.) operator passes
through zero from a negative value to a positive one, t is reset to the value −.p and the
signal s is emitted. In a continuous context, the expression last t refers to the left-limit
of signal t. It is needed here to prevent circularity—a so-called causal or algebraic
loop—in the definition of t.

3+., −., *., /. denote floating-point operations.
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Discrete functions can be activated on the presence of signals produced by continuous
functions:

A memory o is initialized with the value false. Then, at each of the events produced
by the periodic clock periodic, the new value of o is computed by the discrete function
elapsed, otherwise the last computed value is maintained.

3. WHAT IS AN LTTA?

An LTTA is the combination of a quasi-periodic architecture with a protocol for de-
ploying synchronous applications. We now present the key definitions of quasi-periodic
architectures (Section 3.1) and synchronous applications (Section 3.3).

3.1. Quasi-Periodic Architectures

Introduced in Caspi [2000], the quasi-synchronous approach is a set of techniques for
building distributed control systems. It is a formalization of practices that Paul Caspi
observed while consulting in the 1990s at Airbus, where engineers were deploying
synchronous Lustre/SCADE4 [Halbwachs et al. 1991] designs onto networks of non-
synchronized nodes communicating via shared memories with bounded transmission
delays. The quasi-synchronous approach applies to systems of periodically executed
(sample-driven) nodes. In contrast to the Time-Triggered Architecture [Kopetz 2011],
it does not rely on clock synchronization. Such systems arise naturally as soon as two
or more microcontrollers running periodic tasks are interconnected. They are common
in aerospace, power generation, and railway systems.

Definition 3.1 (Quasi-periodic Architecture). A quasi-periodic architecture is a finite
set of nodes N, where every node n ∈ N executes nearly periodically, that is, (a) each node
starts at t = 0, and, (b) the actual time between any two successive activations T ∈ R

may vary between known bounds during an execution:

0 < Tmin ≤ T ≤ Tmax. (1)

Values are transmitted between processes with a delay τ ∈ R, bounded by τmin
and τmax,

0 < τmin ≤ τ ≤ τmax. (2)

Each is buffered at receivers until replaced by a newer one.

We assume without loss of generality that all nodes start executing at t = 0, since
initial phase differences between nodes can be modeled by a succession of mute ac-
tivations before the actual start of the system. A quasi-periodic system can also be
characterized by its nominal period Tnom and maximum jitter ε, where Tmin = Tnom − ε
and Tmax = Tnom + ε, and similarly for the transmission delay. The margins encompass
all sources of divergence between nominal and actual values, including relative clock
jitter, interrupt latencies, and scheduling delays. We assume that individual processes
are synchronous: Reactions triggered by a local clock execute in zero time (atomically
with respect to the local environment).

4www.esterel-technologies.com/products/scade-suite.
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In the original quasi-synchronous approach, transmission delays are only con-
strained to be “significantly shorter than the periods of read and write clocks” [Caspi
2000, Section 3.2.1]. We introduce explicit bounds in Equation (2) to make the definition
more precise and applicable to a wider class of systems. They can be treated naturally
in our modeling approach.

Nodes communicate through shared memories that are updated atomically. Any
given variable is only updated by a single node but may be read by several nodes. The
values written to a variable are sent from the producer to all consumers, where they are
stored in a specific (one-place) buffer. The buffer is only sampled when the process at a
node is activated by the local clock. This model is sometimes termed Communication
by Sampling (CbS) [Benveniste et al. 2007].

Finally, we assume that the network guarantees message delivery and preserves
message order. That is, for the latter, if message m1 is sent before m2, then m2 is never
received before m1. This is necessarily the case when τmax < Tmin + τmin, otherwise
this assumption only burdens implementations with the technicality of numbering
messages and dropping those that arrive out of sequence.

Value Duplication and Loss. The lack of synchronization in the quasi-periodic archi-
tecture means that successive variable values may be duplicated or lost. For instance,
if a consumer of a variable is activated twice between the arrivals of two successive
messages from the producer, it will oversample the buffered value. On the other hand,
if two messages of the producer are received between two activations of the consumer,
the second value overwrites the first, which is then never read. These effects occur for
any ε > 0, regardless of how small.

The timing bounds of Definition 3.1 mean, however, that the maximum numbers
of consecutive oversamplings and overwritings are functions of the bounds on node
periods and transmission delays.

PROPERTY 3.2. Given a pair of nodes executing and communicating according to
Definition 3.1, the maximum number of consecutive oversamplings and overwritings is

nos = now =
⌈

Tmax + τmax − τmin

Tmin

⌉
− 1. (3)

PROOF. Consider a pair of nodes A and B with B receiving messages from A. In the
best case, a message sent by A at time t arrives in B’s shared memory at t + τmin. Then,
if A runs as slowly as possible, the next message is sent at t + Tmax and arrives in B’s
shared memory at worst at t + Tmax + τmax. The maximal delay between two successive
arrivals is thus

Tmax + τmax − τmin.

At best, B is activated every Tmin. The maximum number of executions n of B is thus:

nTmin ≤ Tmax + τmax − τmin.

Each execution of B that occurs between the two arrivals samples the last received
value. The maximum number of oversamplings nos = n−1 is thus given by Equation (3).
The proof for the number of consecutive overwritings is similar.

This property implies that data loss can be prevented by activating a consumer more
frequently than the corresponding producer, for instance, by introducing mute activa-
tions of the receiver (at the cost of higher oversampling). Quasi-periodic architectures
involving such producer-consumer pairs are studied in Benveniste et al. [2002].

Quasi-periodic architectures are a natural fit for continuous control applications
where the error due to sampling artifacts can be computed and compensated for. In
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Fig. 1. The effect of sampling on signal combinations.

this article, however, we treat discrete systems, like state machines, which are generally
intolerant to data duplication and loss.

Signal Combinations. There is another obstacle to implementing discrete applica-
tions on a quasi-periodic architecture: naively combining variables can give results
that diverge from the reference semantics. Consider, for example, Figure 1 [Caspi 2000;
Caspi and Benveniste 2008; Benveniste et al. 2010, Section 4.2.2]. A node C reads two
Boolean inputs a and b, produced by nodes A and B, respectively, and computes the
conjunction, c = a ∧ b. Here, a is false for three activations of A before becoming true,
and b is true for three activations of B before becoming false. In a synchronous seman-
tics, with simultaneous activations of A, B, and C, node C should return false at each
activation. But, as Figure 1 shows, the value computed depends on when each of the
nodes is activated. This phenomenon cannot be avoided by changing the frequency of
node activations.

3.2. Modeling Quasi-Periodic Architectures

One of the central ideas in the original quasi-synchronous approach is to replace
a model with detailed timing behavior by a discrete abstraction [Caspi 2000, Sec-
tion 3.2]. Basically, a system is modeled, for example in Lustre, as a composition of
discrete programs activated by a scheduler program that limits interleaving [Halb-
wachs and Mandel 2006]. Now, rather than arising as a consequence of the timing
constraints of Definition 3.1, properties like Property 3.2 are enforced directly by
the scheduler. This approach allows the application of discrete languages, simula-
tors, and model-checkers, but it does not apply to the present setting where “short
undetermined transition delays” [Caspi 2000, Section 3.2.1] are replaced by Equa-
tion (2). In fact, Caspi knew that “if longer transmission delays are needed, modeling
should be more complex” [Caspi 2000, Section 3.2.1, footnote 2]. The earliest article
on LTTAs [Benveniste et al. 2002] models messages in transmission but still in a
discrete model. Later articles introduce a class of protocols that rely on the timing
behavior of the underlying architecture. Their models mix architectural timing con-
straints with protocol details using automata [Caspi and Benveniste 2008] or ad hoc
extensions of timed Petri nets [Benveniste et al. 2010]. In contrast, we use Zélus, a
synchronous language extended with continuous time, where we can clearly separate
real-time constraints from discrete control logic but still combine both in an executable
language.

Let us first consider a quasi-periodic clock that triggers the activation of an LTTA
node according to Equation (1). Such a clock can be simulated in Zélus using a timer,
a simple ODE ṫ = 1, initialized to an arbitrary value between −Tmin and −Tmax, and

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 4, Article 71, Publication date: August 2016.



71:8 G. Baudart et al.

similarly reinitialized whenever t reaches 0. As Zélus is oriented towards simulation,
we express an arbitrary delay by making a random choice.5

This declares a discrete function named arbitrary with two inputs and defined by a
single expression. Then, the model for node clocks is similar to the periodic clock of
Section 2.2:

The variable t is initialized as described above and increases with slope 1.0. At zero-
crossing instants, a signal c is emitted and t is reset.

Similarly, the constraint on transmission delays from Equation (2) is modeled by
delaying the discrete signal corresponding to the sender’s clock. A simple Zélus model is

The function delay takes a clock c as input. When c ticks, the timer is reinitialized
to an arbitrary value between −τmin and −τmax corresponding to the transmission
delay. Then, when the delay has elapsed, that is, when a zero-crossing is detected,
a signal dc for the delayed clock is emitted. The presented model is simplified for
readability. In particular, it does not allow for simultaneous ongoing transmissions,
that is, it mandates τmax < Tmin. The full version queues ongoing transmissions, which
complicates the model without providing any new insights.

3.3. Synchronous Applications

This article addresses the deployment of synchronous applications onto a quasi-periodic
architecture. By synchronous application, we mean a synchronous program that has
been compiled into a composition of communicating Mealy machines. The question
of generating such a form from a high-level language like Lustre/SCADE, Signal,
Esterel [Benveniste et al. 2003], or the discrete part of Simulink6 does not concern us
here.

In the synchronous model, machines are executed in lockstep. But, as our intent is
to distribute each machine onto its own network node, we must show that a desynchro-
nized execution yields the same overall input/output relation as the reference seman-
tics. The aim is to precisely describe the activation model and the related requirements
on communications, and thereby the form of, and the constraints on program distribu-
tion. The desynchronized executions we consider are still idealized—reproducing them
on systems satisfying Definition 3.1 is the subject of Section 5.

A Mealy machine m is a tuple 〈sinit, I, O, F〉, where sinit is an initial state, I is a set of
input variables, O is a set of output variables, and F is a transition function mapping

5A longer-term ambition is to replace this definition to better express the non-determinism of the model.
6www.mathworks.com/products/simulink.
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a state and input values to the next state and output values:

F : S × V I → S × VO,

where S is the domain of state values and V is the domain of variable values. A Mealy
machine m = 〈sinit, I, O, F〉 defines a stream function7

�m� : (V I)∞ → (VO)∞

generated by repeated firings of the transition function from the initial state:

s(0) = sinit

s(n + 1), o(n) = F(s(n), i(n)).

The fact that the outputs of Mealy machines may depend instantaneously on their
inputs makes both composition [Maraninchi and Rémond 2001] and distribution over
a network [Caspi et al. 1994; Benveniste et al. 2000; Potop-Butucaru et al. 2004]
problematic. An alternative is to only consider a Moore-style composition of Mealy ma-
chines: Outputs may be instantaneous but communications between machines must
be delayed. A machine must wait one step before consuming a value sent by another
machine. This choice precludes the separation of subprograms that communicate in-
stantaneously, but it increases node independence and permits simpler protocols.

For a variable x, let •x denote its delayed counterpart (for n > 0, •x(n) = x(n − 1)).
Similarly, let •X = {•x | x ∈ X}. Now, a set of machines {m1, m2, . . . , mp} can be
composed to form a system N = m1 || m2 || . . . || mp. The corresponding Mealy machine
N = 〈sinit, I, O, FN〉 is defined by

I = I1 ∪ · · · ∪ Ip \ •O,
O = O1 ∪ · · · ∪ Op,
sinit = (sinit1 , . . . , sinitp, nil, . . . , nil)

FN((s1, . . . , sp,
•O), I) = ((s′

1, . . . , s′
p, O), O),

where (s′
i, oi) = Fi(si, ii). The actual inputs of the global Mealy machine are the inputs of

all machines mi that are not delayed versions of variables produced by other machines.
At each step, a delayed version of the output of machines mi, initialized with nil, is
stored into the state of the global Mealy machine. The notation used to define FN
describes the shuffling of input, output, and delayed variables.

The composition is well defined if the following conditions hold: for all mi �= mj ,

Ii ∩ Oj = ∅, (4)

Oi ∩ Oj = ∅, and (5)

Ii \ •O ∩ Ij \ •O = ∅, (6)

Equation (4) states that no machine ever directly depends on the output of another.
Equation (5) imposes that a variable is only defined by one machine. Finally, Equa-
tion (6) states that an input from the environment is only consumed by a single
machine. Otherwise, it would require synchronization among consumers to avoid non-
determinism. Additionally, since the delayed outputs are initially undefined, the com-
position is only well defined when the Fi do not depend on them at the initial instant.

In the synchronous model, all processes run in lockstep, that is, executing one step
of N executes one step of each mi. Execution order does not matter since no node

7X∞ = X ∗ ∪ X ω denotes the set of possibly finite streams over elements of the set X .
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ever directly depends on the output of another. Thus, at each step, all inputs are con-
sumed simultaneously to immediately produce all outputs. The Kahn semantics [Kahn
1974] proposes an alternative model where each machine is considered a function
from a tuple of input streams to a tuple of output streams (the variables effectively
become unbounded queues). Synchronization between distinct components of tuples
and between the activations of elements in a composition are no longer required. The
semantics of a program is defined by the sequence of values at each variable:

�m�K : (V∞)I → (V∞)O.

PROPERTY 3.3. For Mealy machines, composed as described above, the synchronous
semantics and the Kahn semantics are equivalent8

�m� ≈ �m�K.

PROOF. We write x :: xs ∈ V∞ to represent a stream of values, where x ∈ V is the first
value of the stream, and xs ∈ V∞ denotes the rest of the stream. Let us first prove for
n-tuples of finite or infinite streams of the same length that (Vn)∞ ≈ (V∞)n. We define:

F : (Vn)∞ → (V∞)n

F(x1, . . . , xn) :: (xs1, . . . , xsn) = (x1 :: xs1, . . . , xn :: xsn)
G : (V∞)n → (Vn)∞

G(x1 :: xs1, . . . , xn :: xsn) = (x1, . . . , xn) :: (xs1, . . . , xsn).

By construction, streams x1 :: xs1, . . . , xn :: xsn all have the same length. Hence, F ◦G =
Id and G◦ F = Id. This isomorphism can be lifted naturally to functions and we obtain
(V I)∞ → (VO)∞ ≈ (V∞)I → (V∞)O for streams of the same length.

Mealy machines always consume and produce streams of the same length since
the execution of a Mealy machine consumes all inputs at each step and produces all
outputs. The two semantics are thus equivalent.

The overall idea is to take a synchronous application that has been arranged into a
Moore-composition of Mealy machines N = m1 || m2 || . . . || mp, so each machine mi can
be placed on a distinct network node. If the transmission and consumption of values
respects the Kahn semantics, then the network correctly implements the application.
Since we do not permit instantaneous dependencies between variables computed at
different nodes, a variable x computed at one node may only be accessed at another
node through a unit delay, that is, a delay of one logical step. In this way we need not
microschedule node activations.

4. GENERAL FRAMEWORK

We now consider the implementation of a synchronous application S of p Mealy ma-
chines communicating through unit delays on a quasi-periodic architecture with p
nodes.

This task is trivial if the underlying nodes and network are completely synchronous,
that is, Tmin = Tmax ≥ τmax and with all elements initialized simultaneously. One
simply compiles each machine and assigns it to a node. At each tick, all the machines
compute simultaneously and send values to be buffered at consumers for use at the
next tick. The synchronous semantics of an application is preserved directly.

In our setting, however, node activations are not synchronized and we must confront
the artifacts described in Section 3.1: duplication, loss of data, and unintended signal
combinations. We do this by introducing a layer of middleware between application

8 A ≈ B means that A and B are isomorphic.
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Fig. 2. Schema of an LTTA node: At instants determined by the protocol, the controller samples a list
of inputs to triggers the embedded machine and controls the publication of the output. Symbols � are
implemented by the mem function defined in Section 2.1.

and architecture. An LTTA is exactly this combination of a quasi-periodic architecture
with a protocol that preserves the semantics of synchronous applications. We denote
the implementation of an application S on a quasi-periodic architecture as LTTA(S). In
this section we present the general framework of implementations based on a discrete
synchronous model of the architecture. The details of LTTA protocols are presented in
Section 5.

4.1. From Continuous to Discrete Time

We describe the protocols by adapting a classic approach to architecture modeling using
synchronous languages [Halbwachs and Baghdadi 2002]. In doing so, we exploit the
ability of the Zélus language to express delays without a priori discretization.

The quasi-periodic architecture is modeled by a set of clocks. Signals c1, c2, . . . denote
the quasi-periodic clocks of the nodes, and dc1, dc2, dc3, . . . their delayed versions that
model transmission delays (one for each communication channel). The union of all
these signals is a global signal g that is emitted on each event. In Zélus, we write:

The signal g gives a base notion of logical instant or step. It allows us to model the rest
of the architecture in a discrete synchronous framework.

4.2. Modeling Nodes

An LTTA node is formed by composing a Mealy machine with a controller that deter-
mines when to execute the machine and when to send outputs to other nodes. The basic
idea comes from the shell wrappers of Latency Insensitive Design (LID) [Carloni et al.
2001; Carloni and Sangiovanni-Vincentelli 2002]. The schema is shown in Figure 2.

A node is activated at each tick of its quasi-periodic clock c:

An LTTA node is modeled in Zélus as:

The controller node is instantiated with one of the controllers described in the following
section. At instants determined by the protocol, the controller samples a list of inputs
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Fig. 3. Schema of communication links modeling delayed transmission between nodes. The striped box
represents a FIFO queue.

from incoming LTTA links i and passes them on im to trigger the machine, which
produces output om (which may be a tuple). The value of om is then sent on outgoing
LTTA links o when the protocol allows.

The function of the controller is to preserve the semantics of the global synchronous
application by choosing (a) when to execute the machine (emission of signal im) and
(b) when to send the resulting outputs (emission of signal o). All the protocols ensure
that before sending a new value, the previous one has been read by all consumers.
Since nodes execute initially without having to wait for values from other nodes, the
LTTA controllers reintroduce the unit delays required for correct distribution.

4.3. Modeling Links

Delayed communications are modeled by an unbounded FIFO queue that is triggered
by the input signal and the delayed sender clock that models transmission delays dc
(see Section 3.2). Messages in transmission are stored in the queue and emitted when
the transmission delay elapses, that is, if clock dc ticks when the queue is not empty.

Each new message v received on signal i is added at the end of the queue q: q =
enqueue(last q, v). The keyword last refers to the last defined value of a variable. Then,
when a transmission delay has elapsed, that is, each time clock dc ticks when the queue
is not empty (when trans is set to true), the first pending message is emitted on signal o
and removed from the queue: emit o = front(last q) and q = dequeue(last q).

Finally, a link between two distinct nodes, shown in Figure 3, stores the last received
value in a memory. Since nodes are not synchronized, the output of a link must be
defined at each logical step. All link nodes are thus activated at every emission of the
global clock g defined in Section 4.1:
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A link is modeled in Zélus as:

When a message is sent on signal i, it goes through the channel and, after the trans-
mission delay modeled by the delayed clock dc, is stored in a memory. New messages
overwrite previous memory values. The memory contents are output by the link. Note
that the memory mem imposes a unit delay between the input i and the output o thus
forbidding instantaneous transmission (Section 2.1). Since we assume that node com-
putations do not depend on the initial values of delayed outputs (Section 3.3), we can
initialize the memories of LTTA links with an arbitrary value mi.

Fresh Values. The LTTA controllers must detect when a fresh write is received in an
attached shared memory, even when the same value is sent successively. An alternating
bit protocol suffices for this task since the controllers ensure that no values are missed:

The value of the Boolean variable flag is paired with each new value received on signal i.
Its value alternates between true and false at each emission of signal i. This simple
protocol logic is readily incorporated into the link model.

An alternating bit is associated to each new value stored in the memory. Within a
controller, the freshness of an incoming value can now be detected and signaled:

Variable m stores the alternating bit associated with the last read value. It is updated at
each new read signaled by an emission on r. A fresh value is detected when the current
value of the alternating bit differs from the one stored in m, that is, when i.alt <> last
m. The Boolean flag st states whether or not the initial value is considered as fresh.

5. THE LTTA PROTOCOLS

We now present the LTTA protocols. There are two historical proposals, one based on
back-pressure (Section 5.1) and another based on time (Section 5.2), and two optimiza-
tions for networks using broadcast communication (Section 6).
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Fig. 4. The Back-Pressure LTTA controller. The additional inputs ra are acknowledgments from consumers.
The additional output a is for acknowledging producers.

5.1. Back-Pressure LTTA

The Back-Pressure protocol [Tripakis et al. 2008] is inspired by elastic circuits
[Cortadella and Kishinevsky 2007; Cortadella et al. 2006] where a consumer node
must acknowledge each value read by writing to a back pressure link [Carloni 2006]
connected to the producer. This mechanism allows us to execute a synchronous appli-
cation on an asynchronous architecture while preserving the Kahn semantics. In an
elastic circuit, nodes are triggered as soon as all their inputs are available. This does not
work for LTTA nodes since they are triggered by local clocks, so a skipping mechanism
was introduced in Tripakis et al. [2008] and included in later Petri net formalizations
[Benveniste et al. 2010; Baudart et al. 2014].

For each link from a node A to a node B, we introduce a back-pressure link from B
to A. This link is called a (acknowledge) at B and ra (receive acknowledge) at A. The
controller, shown in Figure 4, is readily programmed in Zélus:

The controller automaton has two states. It starts in Wait and skips at each tick until
fresh values have been received on all inputs. It then triggers the machine (data(.)
accesses the data field of the msg structure), stores the result in a local memory m,
sends an acknowledgment to the producer, and transitions immediately to Ready. The
controller skips in Ready until acknowledgments have been received from all consumers
indicating that they have consumed the most recently sent outputs. It then sends the
outputs from the last activation of the machine and returns to Wait.

The freshness of the inputs since the last execution of the machine is tested by a
conjunction of fresh nodes (forall_fresh(i, im, true)). The controller also tests whether
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fresh acknowledgments have been received from all consumers since the last emission
of the output signal o.9

Remark 5.1. The composition of a Back-Pressure controller and a Mealy machine to
form an LTTA node is well defined. Indeed, the dependency graph of the controller is:

im ← i a ← i o ← ra o ← m.

Since the communication with the embedded machine adds the dependency om ← im,
the composition of the two machines is free of cycles and therefore well defined.

Preservation of Semantics. This result was first proved in Tripakis et al. [2008] for
networks of nodes communicating through buffers of arbitrary size. Another proof
is given in Benveniste et al. [2010] and Baudart et al. [2014] based on the relation
with elastic circuits. We give here a new straightforward proof based on the following
liveness property.

PROPERTY 5.2. Let t(EN
k ) be the date of the kth execution of the embedded machine of

a node N. For k > 0, and for any node N, we have:

t
(
EN

k

) ≤ 2(τmax + Tmax)(k − 1).

PROOF. This property is shown by induction on k.

Initialization. Since all nodes start at t = 0 and since they can execute immediately
without having received values from other nodes, we have for all nodes N, t(EN

1 ) = 0.

Induction. Assume the property holds up to and including k. At worst, the last
node executes and sends an acknowledgment at t = 2(τmax + Tmax)(k − 1). The last
acknowledgment is thus received at worst τmax later, just after a tick of a receiver’s clock.
Therefore the receiver does not detect the message until t+τmax +Tmax.10 The latest kth
publication then occurs at t + τmax + Tmax. Symmetrically, this publication is detected
at worst τmax + Tmax later. Hence the (k + 1)th execution occurs at t + 2(τmax + Tmax),
that is, at 2(τmax + Tmax)k.

Consequently, in the absence of crashes, nodes never block, which is enough to ensure
the preservation of semantics.

THEOREM 5.3 (TRIPAKIS ET AL. [2008]; BENVENISTE ET AL. [2010]). Implementing a syn-
chronous application S over a quasi-periodic architecture (Theorem 3.1) with Back-
Pressure controllers preserves the Kahn semantics of the application:

�LTTABP(S)�K = �S�K.

PROOF. Back-Pressure controllers ensure that nodes always sample fresh values
from the memories (guard all_inputs_fresh) and never overwrite a value that has not
yet been read (guard all_acks_fresh). Since Property 5.2 ensures that nodes will always
execute another step, the Kahn semantics of the application is preserved.

Performance Bounds. Property 5.2 also allows the analysis the worst-case perfor-
mance of Back-Pressure LTTA nodes.

THEOREM 5.4 (TRIPAKIS ET AL. [2008]; BENVENISTE ET AL. [2010]). The worst-case through-
put of a Back-Pressure LTTA node is

λBP = 1/2(Tmax + τmax).

9Initially there are no fresh acknowledgements since controllers start in the Wait state.
10The worst-case transmission delay on a quasi-periodic architecture is Tmax + τmax.
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Fig. 5. The Time-Based LTTA controller. A counter n is decremented in each state initialized with value p
in state WAIT and q in state READY; preempted indicates that a fresh value was received on some input.

PROOF. This result follows from Property 5.2. In the worst case, the delay between
two successive executions of a node is 2(Tmax + τmax).

5.2. Time-Based LTTA

The Time-Based LTTA protocol realizes a synchronous execution on a quasi-periodic
architecture by alternating send and execute phases across all nodes. Each node main-
tains a local countdown whose initial value is tuned for the timing characteristics of
the architecture so, when the countdown elapses, it is safe to execute the machine or
publish its results.

A first version of the Time-Based LTTA protocol was introduced in Caspi [2000]. The
protocol was formalized as a Mealy machine with five states in Caspi and Benveniste
[2008] and a simplified version was modeled with Petri nets in Benveniste et al. [2010]
and Baudart et al. [2014]. We propose an even simpler version that can be expressed
as a two-states automaton, formalize it in Zélus, and prove its correctness.

Unlike the Back-Pressure protocol, the Time-Based protocol requires broadcast com-
munication, and acknowledgment values are not sent when inputs are sampled.

ASSUMPTION 1 (BROADCAST COMMUNICATION). All variable updates must be visible at all
nodes and each node must update at least one variable.

The controller for the Time-Based protocol is shown in Figure 5, for parameters p
and q:

The controller automaton has two states. Initially, it passes via Wait, emits the signal
im with the value of the input memory i and thereby executes the machine, stores the
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result in the local memory m, and enters Ready. In Ready, the equation n = q −→ (last
n − 1) initializes a counter n with the value q and decrements it at each subsequent
tick of the clock c. At the instant when the Ready counter would become zero, that is,
when the previous value last n is 1, the controller passes directly into the Wait state,
resets the counter to p, and sends the previously computed outputs from the memory m
to o. It may happen, however, that the local clock is much slower than those of other
nodes. In this case, a fresh value from any node, exists_fresh(i, im), preempts the normal
countdown and triggers the transition to Wait and the associated writing of outputs
(exists_fresh is essentially a disjunction of fresh nodes). The Wait state counts down
from p to give all inputs enough time to arrive before the machine is retriggered.

Basically, nodes slow down by counting to accommodate the unsynchronized activa-
tions of other nodes and message transmission delays but accelerate when they detect
a message from other nodes.

Remark 5.5. The composition of a Time-Based controller and a Mealy machine to
form an LTTA node is always well defined. The proof is similar to that of Remark 5.1.
The dependency graph of a node is

n ← i o ← i o ← m om ← im im ← i.

It has no cyclic dependencies.

Preservation of Semantics. The Time-Based protocol only preserves the Kahn seman-
tics of the application if the countdown values p and q are correctly chosen. Similar
results can be found in Caspi and Benveniste [2008], Benveniste et al. [2010], Baudart
et al. [2014] for previous versions of the protocol.

THEOREM 5.6. The Kahn semantics of a synchronous application S implemented on
a quasi-periodic architecture (Theorem 3.1) with broadcast communication (Assump-
tion 1) using Time-Based controllers is preserved,

�LTTATB(S)�K = �S�K,

provided that both

p >
2τmax + Tmax

Tmin
, (7)

q >
τmax − τmin + (p + 1)Tmax

Tmin
− p. (8)

PROOF. The theorem follows from two properties which together imply that the
kth execution of a node samples the (k − 1)th values of its producers. Since nodes
communicate through unit delays, the Kahn semantics is preserved.

PROPERTY 5.7 (SP
k−1 ≺ EC

k ). For k > 0, the (k − 1)th sending of a producer is received
at its consumers before their respective kth executions.

PROPERTY 5.8 (EC
k ≺ SP

k ). For k > 0, the kth execution of a consumer occurs before
the kth sending from any of its producers is received.

The properties are shown by induction on k.

Initialization. Nodes start at t = 0 and execute immediately (EC
1 ) without having to

receive values from other nodes. The slowest possible consumer first executes at pTmax.
On the other hand, the smallest delay before the first send of any producer arrives at
the consumer is pTmin + qTmin + τmin (countdowns in Wait and Ready with the shortest
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Fig. 6. Explanation of the proofs of Property 5.7 and 5.8.

Fig. 7. Behavior of the Time-Based protocol without broadcast communication. Node N preempts node P
but not node C. Then node P preempts node C.

possible ticks for the first node to publish). From Equations (7) and (8) we then have

(p + q)Tmin + τmin > τmax + (p + 1)Tmax > pTmax,

which guarantees that the consumer executes before the reception of the new value.

Induction. Assume that the properties hold up to and including k − 1. The proofs
proceed by considering the worst-case scenarios illustrated in Figure 6.

For Property 5.7, if the kth execution of a consumer EC
k occurs at time t, then its

(k − 1)th sending SC
k−1 must have occurred at or before t− pTmin (countdown in Wait with

the shortest possible ticks). This sending is detected by any node at worst Tmax + τmax
later, which causes a producer in the Ready state to send (a producer in the Wait
state has already done so), with the value arriving at the consumer at most τmax later.
Equation (7) guarantees that this happens before the consumer executes. If node C was
not the first to send the (k − 1)th value, then SP

k−1 would have occurred even earlier.
For Property 5.8, if the kth execution of a consumer EC

k occurs at time t then its
(k − 1)th sending SC

k−1 cannot have occurred before t − pTmax (countdown in Wait with
the longest possible ticks). The first send by a producer in the (k − 1)th round SP

k−1
cannot occur before t − pTmax − (Tmax + τmax), since any send preempts the consumer
in Ready at worst after a delay of Tmax + τmax. Since the smallest delay before the
subsequent kth send of any producer arrives at the consumer is pTmin + qTmin + τmin
(countdowns in Wait and Ready with the shortest possible ticks for the first node
to publish), Equation (8) guarantees that the kth execution of the consumer occurs
beforehand.

Broadcast Communication. The Time-Based protocol does not wait for acknowledg-
ments from all receivers but rather sends a new value as soon as it detects a publication
from another node. Controllers thus operate more independently, but broadcast commu-
nication is necessary. Otherwise, consider the scenario of Figure 7 obtained by adding
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a third node N to the scenario in Figure 6(b) such that it communicates with node P
but not node C. Now, P may be preempted in the Ready state one tick after EP

k causing
it to send a message that arrives at C at SP

k−1 + (p + 1)Tmin + τmin. Since node C would
not be preempted by N but only by P, in the worst case EC

k occurs (p + 1)Tmax + τmax

after SP
k−1. Theorem 5.8 would then require the impossible condition

(p + 1)Tmin + τmin > (p + 1)Tmax + τmax.

Global Synchronization. In fact, Theorem 5.7 and 5.8 imply strictly more than the
preservation of the Kahn semantics of an application.

COROLLARY 5.9. The Time-Based controller ensures a strict alternation between execute
and send phases throughout the architecture.

PROOF. Since the Time-Based protocol requires broadcast communication, each node
is a producer and consumer for all others. Therefore, Property 5.7 and 5.8 impose a
strict alternation between execute and send phases.

Performance Bounds. Optimal performance requires minimal values for p and q11:

p∗ =
⌊

2τmax + Tmax

Tmin

⌋
+ 1

q∗ =
⌊

τmax − τmin + (p + 1)Tmax

Tmin
− p

⌋
+ 1.

THEOREM 5.10. The worst-case throughput of a Time-Based LTTA node is as follows:

λTB = 1/(p∗ + q∗)Tmax.

PROOF. The slowest possible node spends p∗Tmax in WAIT and q∗Tmax in READY.

Note that this case only occurs if all nodes are perfectly synchronous and run as
slowly as possible. Otherwise, slow nodes would be preempted by the fastest one,
thus improving the overall throughput. To give a rough comparison with Theorem
5.4, remark that we have p, q ≥ 2, thus, in any case λTB ≤ 1/4Tmax. A more detailed
comparison can be found in Section 7.3.

6. OPTIMIZATIONS

Compared to the Back-Pressure protocol, the Time-Based protocol forces a global syn-
chronization of the architecture. But running the Back-Pressure protocol under the
same broadcast assumption (Assumption 1) also induces such strict alternations since
every node must wait for all others to execute before sending a new value. However,
when all nodes communicate by broadcast, there are simpler and more efficient alter-
natives. We propose here two optimizations for these particular networks.

6.1. Round-Based LTTA

The idea of the Round-Based controller is to force a node to wait for messages from
all other nodes before computing and sending a new value. Nodes together perform
rounds of execution. Unfortunately, at the start of a round, a value sent from a faster
node may be received at a slower one and overwrite the last received value before
the latter executes. A simple solution, based on the synchronous network model [Lynch
1996, Chapter 2], is to introduce separate communication and execution phases. In this
case, we could simply execute each application every two rounds. But since lockstep

11∀x ∈ R, �x� denotes the greatest integer i such that i ≤ x.
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Fig. 8. The Round-Based controller. Acknowledgment are no more required. When all inputs are detected,
the controller triggers the embedded machine and directly sends the output om to other nodes.

execution ensures that no node can execute more than twice between two activations
of any other, it is enough to communicate via buffers of size two. This ensures that
messages are never overwritten even if nodes execute the application and directly send
the output at every activation. Acknowledgments are no longer required. The Zélus
code of the controller shown in Figure 8 is as follows:

The forall_fresh now indicates that all input buffers contain at least one value.
Compared to the Back-Pressure and Time-Based protocols, a local memory is not

required to store the result of the embedded Mealy machine since machine’s output is
immediately sent to other nodes.

Remark 6.1. The composition of a Round-Based controller and a Mealy machine
to form an LTTA node is always well defined. The proof is again similar to that of
Remark 5.1. The dependency graph of a node is as follows:

o ← om om ← im im ← i.

It has no cyclic dependencies.

Preservation of the Semantics. For systems using broadcast communication (Assump-
tion 1), Round-Based controllers induce a synchronous execution throughout the entire
system, thus ensuring the preservation of the Kahn semantics. All nodes execute at
approximately the same time.

Performance Bounds. Compared to nodes controlled by the Back-Pressure protocol,
Round-Based nodes can be twice as fast since they immediately send the output of the
embedded machine at each step.

THEOREM 6.2. The worst-case throughput of a Round-Based LTTA node is as follows:

λRB = 1/(Tmax + τmax).

PROOF. Suppose that the last execution of the (k − 1)th round occurs at time t. In
the worst case, a node detects this last publication and sends its new message at
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Fig. 9. Explanation of the proof of Property 6.3.

t + τmax + Tmax. The last execution of the kth round thus occurs τmax + Tmax after the
last execution of the previous round.

6.2. Timed Round-Based LTTA

Like the Back-Pressure protocol, the Round-Based protocol uses blocking communica-
tion. If a node crashes, then the entire application stops. To avoid such problems, a
classic idea is to add timeouts [Attiya et al. 1994] and to run a crash detector together
with the Round-Based controller on each node. When a controller executes a step of
the application, it knows which other nodes are still functioning, since it has received
messages from them, and which have crashed. It can continue to compute using the
values last received from crashed nodes.

At each activation, nodes broadcast a heartbeat message to signal that they are still
active. Every node A maintains a counter initialized to a value p for each other node.
The counter corresponding to a node B is reset to its initial value whenever a heartbeat
message is received from B. The following property ensures that when the counter
reaches zero, node A can conclude that B has crashed.

PROPERTY 6.3 (ATTIYA ET AL. [1994]). For all nodes A, the counter associated to another
node B can only reach zero if B crashed, provided that:

p >
τmax − τmin + Tmax

Tmin
. (9)

PROOF. The proof involves considering the worst-case scenario illustrated in Figure 9.
Each time a node B executes, it sends a heartbeat message to A. The maximum differ-
ence between the times of two consecutive sends is Tmax. In the worst case, A receives
the first message after the shortest possible delay τmin and the second after the longest
possible delay τmax. If A runs as fast as possible, then the counter reaches zero pTmin
after the reception of the first message. Hence the condition τmin + pTmin > τmax + Tmax
suffices to ensure that the counter only reaches zero if node B has crashed.

The Zélus code for the timeout mechanism is as follows:

There is one additional Boolean input i_live for each node. It indicates if a heartbeat
message has been received since the last activation.
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A node executes a step of the application if for every other node it has either re-
ceived a fresh message or detected a crash. In our model, we need only replace the
implementation of fresh(i, r, st) (Section 4.3) with:

Performance Bounds. In the absence of crashes the timeout mechanism has no in-
fluence on the behavior of nodes (Property 6.3) and the Timed Round-Based proto-
col coincides with the Round-Based one. Otherwise the minimal value for the initial
value p is:

p∗ =
⌊

τmax − τmin + Tmax

Tmin

⌋
+ 1.

When one or more nodes crash, active nodes wait at worst p∗Tmax before detecting
the problem and only then execute a step of the application and send the corresponding
message. The delay between two successive rounds is thus bounded by p∗Tmax + τmax.

Since every node broadcasts a message at every step, the timeout mechanism has
a high message complexity. An alternative is to send a heartbeat message only once
every k steps and to adjust the initial value of the counters appropriately. The worst-
case delay between two successive rounds increases accordingly.

7. CLOCK SYNCHRONIZATION

The LTTA protocols are designed to accommodate the loose timing of node activations
in a quasi-periodic architecture. But modern clock synchronization protocols are cost-
effective and precise: the Network Time Protocol [Mills 2006] and True-Time [Corbett
et al. 2012] provide millisecond accuracies across the Internet, and the Precise Time
Protocol [Lee et al. 2005] and the Time-Triggered Protocol [Kopetz 2011, Chapter 8]
provide sub-microsecond accuracies at smaller scales. With synchronized clocks, the
completely synchronous scheme outlined at the start of Section 4 becomes feasible,
raising the question: Is there really any need for the LTTA protocols?

To respond to this question, we recall the basics of one of the most efficient clock syn-
chronization schemes in Section 7.1. Then we work from well-known principles [Kopetz
2011, Chapter 3] to build a globally synchronous system in Section 7.2. Finally, we
compare the result with the two LTTA protocols and their round-based counterparts
in Section 7.3.

7.1. Central Master Synchronization

In central master synchronization, a node’s local time reference is incremented by the
nominal period Tnom at every activation. A distinguished node, the central master,
periodically sends the value of its local time to all other nodes. When a slave node
receives this message, it corrects its local time reference according to the sent value
and the transmission latency. This synchronization scheme is illustrated in Figure 10.

For the quasi-periodic architecture, and assuming the central master is directly
connected to all other nodes, the maximum difference between local time references
immediately after resynchronization depends on the difference between the slowest
and the fastest message transmissions between the central master and slaves:

� = τmax + Tmax − τmin.

The delay between successive resynchronizations R is equal, at best, to the master’s
activation period. Between synchronizations, a node clock may drift from the master
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Fig. 10. [Kopetz 2011, Figure 3.10] Central Master Synchronization: A node’s clock stays within the entire
shaded area. R denotes the resynchronization interval, � the offset after resynchronization, ρ the drift rate
between two clocks, and � the precision of the protocol.

clock. The maximum drift rate ρ is, in our case,

ρ = Tmax

Tnom
− 1 = Tmax − Tmin

Tmax + Tmin
.

The optimal precision of clock synchronization is then the maximal accumulated diver-
gence between two node clocks during the resynchronization interval, that is,

� = � + 2ρR.

7.2. The Global Clock Protocol

A global notion of time can be realized by subsampling the local clock ticks of nodes
provided the period of the global clock Tg is greater than the precision of the syn-
chronization, that is, Tg > �. This assumption is called the reasonableness condition
in Kopetz [2011, Chapter 3, Section 3.2.1]. On any given node, the nth tick of the global
clock occurs as soon as the local reference time is greater than nTg. These particular
ticks of the local clocks are called macroticks. Under the reasonableness condition,
the delay between nodes activations that occur at the same macrotick is less than �.
Activating nodes on each of their macroticks thus naturally imposes a synchronous
execution of the architecture. Then, as for the round-based protocols, communication
through two-place buffers suffices to ensure that messages are never incorrectly over-
written.

Finally, the transmission delay may prevent a value sent at the kth macrotick from
arriving before the (k + 1)th macrotick begins. From the maximum transmission delay,
we can calculate the number of macroticks m that a node must wait to sample a new
value with certainty:

m =
⌊

τmax

Tg

⌋
+ 1.

This means that the Kahn semantics of an application is preserved if nodes execute
one step every m macroticks and communicate through buffers of size two. This gives
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Table I. Relative Worst-Case Slowdowns for the Different Protocols: Back-Pressure (BP)
and Time-Based (TB); the Optimizations Round-Based (RB) and Timed Round-Based

(TRB); and Global Clock (GC), Compared to an Ideal Synchronous Execution

Tnom τnom ε BP TB RB/TRB GC

10−2 10−6 1% 2.0 4.0 1.0 3.1
5% 2.1 4.2 1.0 3.5

15% 2.3 5.7 1.1 4.5
10−4 10−4 1% 4.0 6.1 2.0 3.2

5% 4.2 6.3 2.1 3.8
15% 4.6 10.3 2.3 5.4

10−6 10−2 1% 2.0 2.1 1.0 1.1
5% 2.1 2.7 1.0 1.3

15% 2.3 4.6 1.1 1.9

a worst-case throughput of

λGC = 1/mTg. (10)

We refer to this simple scheme as the Global-Clock protocol.

7.3. Comparative Evaluation

Performances. Each of the protocols entails some overhead in application execution time
compared to an ideal scheme where Tmin = Tmax and τmin = τmax. To give a quantitative
impression of their different performance characteristics, we instantiate in Table I the
worst-case throughputs of the protocols—Theorems 5.4, 5.10, 6.2, and Equation 10—
and calculate the slowdown relative to the ideal case for three different classes of
architecture, from the top: slower nodes/faster communication, comparable nodes and
communication, faster nodes/slower communication. In each class, we consider three
different jitter values (ε) applied to both the nominal period (Tnom) and transmission
delay (τnom). The slowdown is the relative application speed for a given architecture
and protocol: 1.0 indicates the same speed as an ideal system; 2.0 means twice as slow.

The Global-Clock shows the best performances when the activation period is much
less than the transmission delay. In this case, the cost of clock synchronization is negli-
gible, and lockstep execution with two-place buffers maximizes application activations.
For the same reason, protocols optimized for systems using broadcast communication
outperform both historical LTTA protocols and the Global Clock protocol, which still
requires a little overhead for synchronization (slowdown factor between 1.1 and 1.9).
Conversely, when the activation period is much greater than the transmission delay, the
Time-Based protocol, which waits for the slowest nodes, has the worst performances.
Also, in that case, the overhead due to clock synchronization becomes significant and
protocols that do not require this synchronization perform best.

The Time-Based protocol is especially sensitive to jitter; its performance decreases
rapidly as jitter increases. Rather than waiting for messages from all other nodes, the
Time-Based protocol only needs the very first message received in a round and then
waits long enough to be sure that all other messages have been received. It is thus
more pessimistic than the Round-Based protocol, which reacts as soon as all inputs are
detected.

In all cases, Round-Based protocols achieve the best worst-case throughput, espe-
cially if there is significant jitter, and the two historical protocols (BP and TB) show com-
parable or worse performances than those of the Global-Clock protocol. Note, though,
that we consider a simplified and optimistic case; realistic distributed clock synchro-
nization algorithms will have higher overhead. The Time-Based protocol always has
the biggest worst-case slowdown, but it is the least intrusive in terms of additional
control logic.
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Fault Tolerance. The Back-Pressure and Round-Based protocols rely on blocking com-
munication. If a node crashes, then the entire system stops. Therefore, fault tolerance
mechanisms must be implemented in the middleware (for instance, resurrection mech-
anisms). On the other hand, the Time-Based, Timed Round-Based, and Global Clock
protocols use timing mechanisms. If a node crashes, then active nodes continue comput-
ing using the values last sent by the crashed node. This behavior allows fault tolerance
mechanisms to be implemented in the application. We only consider fail-stop crashes.
Fault tolerance in the general case with omission or byzantine failures is a complex
problem that requires more sophisticated protocols (with voters, self-checking, agree-
ment protocols, clique avoidance, and node reintegration) [Kopetz and Bauer 2003]. The
LTTA protocols aim only to provide a lighter alternative for less demanding systems.

8. CONCLUSION

In this article, we presented the Back-Pressure and Time-Based LTTA protocols and
optimizations of these protocols for systems using broadcast communication in a unified
synchronous framework. This gives both a precise description of the implementation
of synchronous applications over quasi-periodic architectures and also permits the
direct compilation of protocol controllers together with application functions.12 We show
that the Kahn semantics of synchronous applications implemented on quasi-periodic
architectures is preserved by all protocols. Finally, we give bounds on the worst-case
throughputs of the protocols.

The comparison with an optimistic implementation of clock synchronization shows
that the LTTA protocols and their optimizations are at least competitive for jittery
architectures where the transmission delay is not significant relative to node periods—
exactly the class of embedded systems of interest. In addition, LTTA protocols are
simple to implement: Nodes need only listen and wait and can thus be implemented as
one- or two-state automata.
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