
Reactive Chatbot Programming
Guillaume Baudart

IBM Research
USA

Martin Hirzel
IBM Research

USA

Louis Mandel
IBM Research

USA

Avraham Shinnar
IBM Research

USA

Jérôme Siméon
Clause Inc.

USA

Abstract
Chatbots are reactive applications with a conversational in-
terface. They are usually implemented as compositions of
client-side components and cloud-hosted services, including
artificial-intelligence technology. Unfortunately, program-
ming such reactive multi-tier applications with traditional
programming languages is cumbersome. This paper intro-
duces wcs-ocaml, a new multi-tier chatbot generator library
designed for use with the reactive language ReactiveML.
The paper explains our library with small didactic examples
throughout, and closes with a larger case-study of a chatbot
for authoring event-processing rules.

CCS Concepts • Software and its engineering → Con-
current programming languages; • Human-centered com-
puting → Natural language interfaces;

Keywords Chatbot, reactive programming, synchronous
programming
ACM Reference Format:
Guillaume Baudart, Martin Hirzel, Louis Mandel, Avraham Shin-
nar, and Jérôme Siméon. 2018. Reactive Chatbot Programming.
In Proceedings of the 5th ACM SIGPLAN International Workshop
on Reactive and Event-Based Languages and Systems (REBLS ’18),
November 4, 2018, Boston, MA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3281278.3281282

1 Introduction
A chatbot is a virtual conversational agent that communi-
cates with users through natural-language dialog. Compa-
nies often find it beneficial to offer services to their customers
or employees via chatbots, because they support diverse
delivery channels (web pages, phone, messaging systems)
and versatile applications (question answering, form filling).
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
REBLS ’18, November 4, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6070-8/18/11. . . $15.00
https://doi.org/10.1145/3281278.3281282

Load

Context

input

output

Application Logic

Watson Assistant

Store Application Logic Dialog Interpreter

Application

Natural Language Understanding
Intent  

Classifier
Entity  

Extractor
before

after

Figure 1. Chatbot Architecture.

Unfortunately, implementing good conversational agents re-
quires a lot of programming effort, because they are typically
multi-tier, repetitive, reactive, and multi-component.
Chatbots often use cloud-hosted runtimes to make them

easier to scale and operate [20]. Figure 1 shows a typical
architecture. The cloud tier uses a stateless runtime (here
Watson Assistant [12]) for natural-language understanding
and dialog interpretation. The application tier maintains
the conversation state, interfaces with the delivery channel,
and implements additional logic, such as calling a weather
service or querying a database. Unfortunately, this multi-
tier architecture often requires chatbot designers to keep
separate programs written in multiple domain specific lan-
guages in-sync by hand. To ease this process, we propose
wcs-ocaml, a library to program multi-tier chatbots in a sin-
gle programming language. Our library generates the code
for the runtime tier; this also provides an opportunity to
generate repetitive code as needed.
The appeal of conversational agents is their ability to of-

fer the services of a company to users via diverse delivery
channels. That makes them naturally reactive: chatbots are
stateful applications that interact asynchronously with exter-
nal services and external delivery channels. Using a reactive
language simplifies chatbot development; this paper demon-
strates that with ReactiveML [17].
Like with any other software, the code base and the de-

velopment team for a chatbot can grow large, so modularity
is paramount. Chatbot composition often involves features
such as dispatch among composable skills, dialog preemp-
tion or digression, and mixed-initiative dialog. It is not trivial
to find suitable abstractions for these without a reactive lan-
guage. This paper showcases how to use features of a reactive
language for modular chatbot composition.

https://doi.org/10.1145/3281278.3281282
https://doi.org/10.1145/3281278.3281282

REBLS ’18, November 4, 2018, Boston, MA, USA Baudart, Hirzel, Mandel, Shinnar, and Siméon

This paper makes the following contributions:
• wcs-ocaml, a strongly typed OCaml library for generating
multi-tier chatbots (Section 2).

• Leveraging a general-purpose reactive programming lan-
guage for chatbots orchestration (Section 3).

• RuleBot, a case-study using chatbot generation and re-
active orchestration, that is itself used to author event
processing rules (Section 4).

Overall, this paper suggests that chatbots are a fitting appli-
cation of and for reactive and event-based technologies.

2 Generating Multi-tier Chatbots
This section shows how to generate a multi-tier chatbot
following an approach inspired by multi-tier programming
of web applications [6, 22]. Developers can thus program
both Watson Assistant and the application in a single lan-
guage using wcs-ocaml.1 As a running example, we generate
KnockKnockBot, a simple chatbot that tells the following joke:
1 Bot: Knock Knock
2 User: Who's there?
3 Bot: Broken Pencil
4 User: Broken Pencil who?
5 Bot: Never mind it's pointless...

2.1 Programming Watson Assistant
In Watson Assistant, a program is called a workspace and
is represented by a JSON object containing definitions of
intents, entities, and the dialog (controlling the right side of
Figure 1).

Intents. Intents are the desired user actions. For instance,
the user may ask who is knocking at the door. In Watson
Assistant, intents are defined by a label and a set of examples
that are used to train the intent classifier.
let who_intent =

Wcs.intent "Who"

~examples: ["Who's there?";

"Who is there?";

"Who are you?";] ()

The intent classifier is a machine learning model that is
able to recognize similar utterances [26]. For instance the
utterance:Who’s that stumbling around in the dark? will be
successfully classified as a who_intent.

Entities. Entities are the objects the user is referring to. In
our example, we define an entity for the name of the main
character Broken Pencil. Entities are defined by a name and
a list of synonyms (or, a regular expression).
let char_entity =

Wcs.entity "Characters"

~values: ["Broken Pencil",

1WCS refers to the former name Watson Conversation Service.

Figure 2. Watson Assistant User Interface.

["Damaged Pen"; "Fractured Pencil"]] ()

The entity extractor detects an entity if one of the synonyms
appear in the utterance (or if the regular expression matches).

Dialog. The dialog is specified by a finite state machine that
reacts to the intents and entities or context information set
by the application. For instance, the control logic of our
joke is a three-states automaton: 1) knock starts the joke,
2) whoisthere answers the question with the name of the
main character, 3) answer concludes with the punchline.
let knockknock who_intent char_entity answer =

let knock =

Wcs.dialog_node ("Knock")

~conditions_spel: (Spel.bool true)

~text: "Knock knock" () in

let whoisthere =

Wcs.dialog_node ("WhoIsThere")

~conditions_spel: (Spel.intent who_intent)

~text: (entity_value char_entity)

~parent: knock () in

let answer =

Wcs.dialog_node ("Answer")

~conditions_spel: (Spel.entity char_entity ())

~text: answer

~parent: whoisthere

~context: (`Assoc ["return", `Bool true]) () in

[knock; whoisthere; answer]

The states of the automaton, called dialog nodes, are de-
fined using the Wcs.dialog_node function. This builder func-
tion takes the name of the node and a set of options: the
condition to enter the node (~condition_spel) expressed in
SpEL [23], the response text (~text), and the parent node in
the automaton (~parent). A node can also set information
in the context object (~context). This object stores the state
of the system, and can be used to pass information between
conversation turns. In our example, the node answer sets
return to true in the context, signaling the end of the joke.
In wcs-ocaml, SpEL expressions can be defined with a

SpEL AST, or directly in the SpEL syntax used by Watson
Assistant. For instance, the condition of the node answer

Reactive Chatbot Programming REBLS ’18, November 4, 2018, Boston, MA, USA

can be rewritten ~condition:"@Characters"which evaluates
to true if the Characters entity is identified in the current
utterance. However, only the first approach returns an error
at compile time if the char_entity entity is not defined.
Notice also that we are using OCaml name binding and

type checking to link elements. For instance, the ~parent

argument is a dialog node instead of just a string as in the
JSON format of a node.

Workspace. We now have all the elements of a workspace
that can be run with Watson Assistant: a list of intents, a list
of entities, and a list of dialog nodes.
let ws_knockknock =

Wcs.workspace "Knock Knock"

~intents: [who_intent]

~entities: [char_entity]

~dialog_nodes: (knockknock who_intent char_entity

"Never mind it's pointless") ()

The library can be used to programmatically manipulate and
check workspaces. wcs-ocaml can also generate the corre-
sponding JSON object, and the developer can load it into
Watson Assistant using the REST API or the user interface.
The workspace can then be used by an application or visual-
ized in the Watson Assistant editor (Figure 2).

2.2 Programming the Application
The workspace is only one tier of the complete chatbot. As
shown in Figure 1, Watson Assistant also requires an appli-
cation tier. Therefore, wcs-ocaml also provides support to
deploy workspaces and to invoke them.

Workspace invocation. The REST call message sends a re-
quest containing the user utterance and the current context
to Watson Assistant and returns the corresponding response.
The context contains all the information required to resume
the conversation (e.g., the current dialog node), and addi-
tional data that can be used to communicate between the
application and the chatbot. For instance, the node answer

defines a context variable return to notify the application of
the end of the joke (Section 2.1).
Using the message function, we can define an interpret

function that executes a conversation turn with a workspace
id and extracts the value of the context field return. The first
argument of message denotes the service credentials creds.
let interpret creds id req =

let resp = Wcs_call.message creds id req in

let ctx, ret = Json.take resp.msg_rsp_context "return" in

{ resp with msg_rsp_context = ctx }, ret

The context is an arbitrary JSON object that can be de-
fined in OCaml with the Yojson library. There are thus only
limited type guaranties on the context variables used to
communicate between the application and the workspace.
However, when both the application and the workspace are
programmed in OCaml it is possible to share data structures.

In our example, we can define a new type return (defined
by return = { return: bool; }) and use JSON serialization
in node answer and deserialization in the interpret function
to impose stronger type guaranties.

A complete chatbot. The interpret function only executes
one conversation turn.We can now define a complete chatbot
that loops over the interpret function while maintaining
the context between conversation turns.
let exec creds id =

let rec loop ctx =

let txt = input_line stdin in

let req =

Wcs.message_request ~text:txt ~context:ctx ()

in

let rsp, return = interpret creds id req in

print_output rsp;

begin match return with

| Some v -> v

| None -> loop rsp.msg_rsp_context

end

in

loop Json.null

Deploying a chatbot. The wcs-ocaml library provides util-
ity functions to deploy workspaces in Watson Assistant.
These make it possible to integrate workspaces deployment
in the application to avoid discrepancies between the two
parts of the chatbot and use a version control system to man-
age the complete code. Programmers can thus frequently
update and re-deploy the application to integrate user feed-
back and continuously improve the system [25].

3 Reactive Orchestration
Section 2 showed how to generate workspaces and invoke
them in a simple chatbot application. This section demon-
strates how to leverage reactive programming to build ad-
vanced chatbots by composing elementary ones. All the or-
chestration techniques presented here are generic and can
be applied to any chatbot application.

3.1 ReactiveML
To illustrate our approach, we use ReactiveML [17], a reactive
extension of OCaml. ReactiveML adds to OCaml the notion of
processes that can be composed in parallel and communicate
through signals. The language also provides some high-level
reactive control structures like suspension and preemption
(see [17] for more details on the semantics of the language
and its implementation).
As a first example, we can lift the exec function of Sec-

tion 2.2 to a ReactiveML process.
let process exec creds id input output =

let rec process loop_ ctx =

await input([txt]) in

let req = message_request txt ctx in

REBLS ’18, November 4, 2018, Boston, MA, USA Baudart, Hirzel, Mandel, Shinnar, and Siméon

let rsp, return = interpret creds id req in

emit output rsp;

begin match return with

| Some v -> v

| None -> run loop_ rsp.msg_rsp_context

end

in

run loop_ Json.null

Compared to the exec function presented in Section 2.2,
the exec process takes two additional arguments input and
output. These signals are the communication channels used
to interact with the chatbot.
The process waits for a new user utterance to trigger a

reaction using the await construct. It calls the cloud ser-
vice using message_request and decodes the response with
interpret.2 After the call to interpret, instead of directly
printing the output text on the standard output, the response
is emitted on the output signal using the emit construct.
Then, depending on the value of the return variable, the
code returns the corresponding value or launches the recur-
sive call with the run construct.
Signals input and output can be used to delegate the in-

terface with the user to dedicated processes which ease the
composition with other chatbots. For examples, we can build
a simple chatbot by running in parallel exec with a process
io that fetches user utterances (e.g., from the standard in-
put) and prints the chatbot responses (e.g., on the standard
output).
let process simple_bot creds id =

signal bot_output, user_input in

run io bot_output user_input ||

run exec creds id user_input bot_output

The parallel composition is realized with the || operator. The
two processes communicate through the signals bot_output
and user_input, introduced with the signal/in construct.

3.2 Chatbot State Machines
We now show how to use the control structures provided by
ReactiveML to orchestrate the execution of chatbots.

Restart. First, consider a chatbot with a multi-modal inter-
face with a reset button to restart the conversation from the
beginning. This behavior can be implemented as follows:
let rec process exec_restart creds id input output restart =

do

run exec creds id input output

until restart ->

run exec_restart creds id input output restart

done

The preemption is realized with the do/until construct. The
execution of the exec process is interrupted when the signal
restart is emitted, causing a recursive call to exec_restart.

2 interpret could be called asynchronously using Rml_async.

Timeout. Consider now a security mechanism that checks
if the user is still active. The controller is a two-state au-
tomaton. The first state runs the main chatbot. If the user
remains silent for 10 seconds, the controller enters a sec-
ond mode, where a second chatbot asks if the conversation
should continue. The corresponding ReactiveML code is:

let process exec_timeout creds id confirm input output =

signal timeout, suspend_resume, kill in

do

control

run exec creds id input output

with suspend_resume done

||

run periodic 10 timeout input

||

loop

await timeout;

emit suspend_resume;

let continue = run confirm input output in

if continue then emit suspend_resume

else emit kill

end

until kill done

The exec_timeout process comprises three parts executed in
parallel. 1) The main chatbot is launched inside a control

construct. Its execution suspends when suspend_resume is
emitted and resumes at the next emission of the signal. 2) In
parallel, the process periodic is a countdown that emits
the signal timeout after 10 seconds of inactivity. The count-
down is reset at each new user input. 3) In parallel, when-
ever signal timeout is observed, the controller emits signal
suspend_resume to suspend the execution of the main chat-
bot and launch the process confirm. If the user wants to
continue the conversation (confirm returns true) the con-
troller emits suspend_resume again to resume the execution
of the main chatbot. Otherwise it emits signal kill, trigger-
ing the do/until construct enclosing the three parts, thus
terminating the process.

Note that exec_timeout is a higher-order process. It takes
the process confirm as argument. Process confirm can be
implemented with a Watson Assistant workspace executed
by exec or by an arbitrary ReactiveML process.

3.3 Chatbot Dispatch
In the previous example the switch between the two chatbots
is triggered by an external event (timeout or termination).
A common pattern is to do the switch based on the con-
versation flow (e.g., invoking the joke skill of a personal
assistant).

Turn dispatch. A first solution is to add a dedicated dis-
patcher chatbot whose role is to explicitely call other chat-
bots. Such a dispatcher can be programmed in a generic way
as follows:

Reactive Chatbot Programming REBLS ’18, November 4, 2018, Boston, MA, USA

let process exec_dispatch creds

dispatch_id trigger_id_list input output =

let trigger_id_input_list =

List.map

(fun (trigger, id) -> (trigger, (id, new_signal())))

trigger_id_list

in

Rml_list.par_iter

(proc (_, (id, local_input)) ->

run exec creds id local_input output)

trigger_id_input_list

||

loop

let trigger = run exec creds dispatch_id input output in

let _, local_input =

List.assoc trigger trigger_id_input_list

in

emit local_input (last ?input)

end

Besides the service credentials and the input and output

signals, the exec_dispatch process takes as arguments the id
of the dispatcher chatbot dispatch_id, and trigger_id_list,
a list of pairs (trigger, chatbot id). Whenever the dispatcher
terminates, its return value is matched against the list of trig-
gers to launch the corresponding chatbot. This architecture
supports a multi-turn conversation with the dispatcher to
trigger a chatbot, but the user must go through the dispatcher
for each conversation turn with the chatbot.
The first part of the process exec_dispatch turns the list

trigger_id_list into an association list indexed by the trig-
gers trigger_id_input_list, where chatbot ids are paired
with a unique local input signal (new_signal()). The second
part launches in parallel one exec process for each chatbot
using its local input signal. All the chatbots thus publish their
responses on the same output signal, but await inputs on
their own local signal. The last part executes the dispatcher
to get a trigger value. Based on this value, it retrieves the
corresponding local input signal in trigger_id_input_list

and emits the last received input on this signal, thus trigger-
ing the corresponding chatbot.
Note that the dispatcher maintains the states of all the

chatbots in parallel. The user can thus suspend and resume
multiple conversations at will.

Session dispatch. Instead of addressing the dispatcher be-
fore each conversation turn, the next example uses the dis-
patcher to start multi-turn conversations with the chatbots.
A first conversation determines which skill to trigger for the
next session. In addition, a supervisor provides high-level
controls during a session. At any time during the conversa-
tion, the user can express generic commands such as stop or
restart.
The process session_dispatch is a two-state automaton

implemented with two mutually recursive processes. State
dispatch_state determines the chatbot for the next session.

Afterwards state control_state launches a supervised con-
versation with the corresponding chatbot.
let process session_dispatch creds

dispatch_id controller_id trigger_id_list input output =

let rec process dispatch_state =

let trigger = run exec creds dispatch_id input output in

let _, id = List.assoc trigger trigger_id_list in

run control_state id

and process control_state id =

signal kill, restart in

signal cmds, local_input in

do

run exec creds controller_id input cmds ||

run emit_commands cmds input kill restart local_input ||

run exec_restart creds id local_input output restart;

emit kill

until kill -> run dispatch_state

done

in

run dispatch_state

State control_state launches in parallel: 1) one exec pro-
cess for the controller chatbot which reads the main input

signal and emits commands on the local signal cmds. 2) A
process emit_commands that controls the emission of signals
kill and restart based on the commands emitted by the
controller. If no command is received, emit_commands sim-
ply pipes the current input in local_input. 3) A process
exec_restart (Section 3.2) controlled by the restart signal
for the session chatbot, which reads the local_input signal
and publishes on the global output. These three processes
are executed inside a do/until construct controlled by kill.
The controller can thus terminate the conversation at any
moment to go back to dispatch_state.
The process emit_commands emits signals corresponding

to the commands detected on signal cmds.
type command = Stop | Reset | Continue

let process emit_commands cmds input kill

restart local_input =

loop

await input(txt, ctx) in

match get_command ctx with

| Stop -> emit kill

| Continue -> emit local_input (txt, ctx)

| Reset -> emit restart

end

This process is another illustration of how to share data
structures between the application and the Watson Assistant
workspace (see Section 2.2). The function get_command mar-
shals the JSON object returned by the controller workspace
into the OCaml command type. The function that generates
the workspace does the opposite operation, unmarshalling a

REBLS ’18, November 4, 2018, Boston, MA, USA Baudart, Hirzel, Mandel, Shinnar, and Siméon

1 when a transaction occurs, called 'the transaction'
2 if
3 the country code of this transaction is not "US"
4 and the amount of this transaction is more than 1000
5 then
6 emit a new authorization response where
7 the account is 'the account',
8 the message is "R01: Out of country transaction greater than 1000",
9 the transaction is this transaction;

(a) Event rule

1 an account is a business entity identified by an id.
2 an account has a status (an account status).
3 an account status can be one of: Excellent, Good, Fair, Poor, Risky.
4

5 a transaction is a business event time−stamped by a date.
6 a transaction is related to an account.
7 a transaction has an amount (a number).
8 a transaction has a country code.
9

10 an authorization response is a business event time−stamped by a date.
11 an authorization response is related to an account.
12 an authorization response has a message.
13 an authorization response has a transaction.

(b) Data model

Figure 3. ODM credit card example [11].

command into a JSON object. We can use this type to discrimi-
nate between the possible values returned by get_command.
If the command is Stop or Reset we emit the corresponding
signals. If the command is Continue, which is returned by
get_command when the user does not trigger the controller,
we simply pipe the current input in local_input.

4 Case Study: RuleBot
As a case study, we now present RuleBot, a chatbot for author-
ing business rules [5].3 We target the event-processing engine
ODM Insights (Operational Decision Manager: Decision Server
Insights) in which programs are expressed in a controlled nat-
ural language called BERL (Business Event Rule Language).
The design of RuleBot was challenging for two main reasons.
1) The dialog is mixed-initiative, that is, both the chatbot and
the user can lead the conversation. This desirable trait for
conversational agents benefits from advanced composition
techniques. 2) The dialog builds a recursive data structure,
the AST of an event processing rule, which heavily relies on
data sharing between the service and the application.

4.1 ODM Insights
Figure 3a shows an example of a BERL program for handling
credit card transactions and authorization responses taken

3https://github.com/IBM/wcs-ocaml/tree/master/examples/rulebot

rule ::= when event (if cond)? then actions
event ::= (a | an) EVENT occurs, (called VAR)?
cond ::= expr (and expr)∗
actions ::= (action ;)+
action ::= print expr | emit expr

| define VAR as expr
| set FIELD of VAR to expr

expr ::= VAR | expr BOP expr | not expr | lit
| this EVENT | the FIELD of expr
| the (total | average) FIELD of (all ?) expr
| a new CONCEPT where (the FIELD is expr ,)+

lit ::= INT | REAL |STRING |BOOL |ENUM |DATE |DURATION
BOP ::= and | or | is | is more than | is not | ...

Figure 4. Grammar of a subset of BERL.

directly from the tutorial of the official product documenta-
tion [11]. The keywords when, if, and then introduce the
event, condition, and actions clauses of the rule, respectively.
BERL is a controlled natural language [14]. While users

can intuitively read programs like the one presented in Fig-
ure 3a, programmers must follow the grammar of the lan-
guage. Figure 4 shows a representative subset of the BERL
grammar. A rule consists of an event (when-clause), a condi-
tion (optional if-clause), and actions (then-clause). There
are four different kinds of actions: print a message, emit an
event, define a variable, or set a field. A large portion of the
grammar (everything after expr) is devoted to the syntax
of expressions that resembles expression languages found
in many conventional programming languages but with a
syntax reminiscent of natural language.
The concepts, fields, and events used in the rules (e.g.,

account, transaction, and authorization response) are defined
in a separate Business Model Definition (BMD) file. For in-
stance, Figure 3b shows the BMD file used for the credit card
transactions rules. This data model is also described in a
controlled natural language.

4.2 RuleBot Overview
RuleBot provides a conversational interface with the goal to
help non-programmer business users to author rules using
the information provided in the BMD file. Presenting the
authoring experience as a conversation enables RuleBot to
guide and assist the human who does not need to learn how
to program in the BERL language. For example, Lines 6-7 of
Figure 3a can be generated with the following conversation:
1 Bot: What kind of action would you like to add?
2 User: Emit a new authorization response?
3 Bot: Ok, I'm adding a new emit action.
4 Bot: What is the account of the authorization response?
5 User: The value of the variable "the account".
6 Bot: What is the message of the authorization response?

Reactive Chatbot Programming REBLS ’18, November 4, 2018, Boston, MA, USA

rule

event (when a . occurs, called .)

transaction 'the transaction'

cond (if .)

expr (. and .)

expr (. is not .)

expr (the . of .)

country code expr (this .)

transaction

"US"

exp (. is more than .)

exp (the . of .)

amount expr (this .)

transaction

1000

actions (then .)

action (emit .)

Figure 5. Partial tree under construction.

The bot uses the structure of a rule and the data model (e.g.,
the required field of an authorization defined in Line 11 of
Figure 3b) to guide the dialog.

Through the flow of the conversation, the dialog controller
incrementally builds the abstract syntax tree (AST) of a BERL
rule. The central data structure in RuleBot is thus the partial
tree, that is, a BERL AST under construction. This is a key
data structure because both the flow of the conversation
itself and its outcome are driven by the shape of BERL rules.
Figure 5 shows the partial tree state at Line 3 of the sample
conversation. Note that it is a partial tree since the emitAct
node is still missing required children.

4.3 Building the Rule
The partial tree associates a state to each node (represented
with different colors and styling in Figures 5): undefined (blue,
no border), filled (yellow, dashed border), or accepted (green,
solid-line border). The state is used to guide the conversation.
A node in the undefined state is still missing children. The
conversation should thus go towards adding these AST ele-
ments. For example, the partial tree of Figure 5 is leading to
the generation of Line 4 of the sample conversation. When
all its required children are filled, a node switches to the
filled state. However, since the bot (and the user) can make
mistakes, it is important to be able to modify a node. A node
in the filled state can thus still be edited.
The user can accept or reject parts of the AST, in which

case they must be filled again. The conversation can termi-
nate only when all the nodes are in the accepted state.
We introduce separate data structures to represent tree

transformations called instructions. Instructions constitute
a protocol by which components of the dialog controller
communicate with each other, as shown in Section 4.5. There
are two kinds of instructions: replace, which swaps out one
subtree for a new one, and accept, which changes the state
of a subtree to be accepted.

4.4 Natural Language Understanding
RuleBot handles user input that can combine natural lan-
guage text and BERL expressions. At each step of the conver-
sation, the user can input BERL fragments to short-circuit
RuleBot understanding. This ability provides for a smooth
transition between free natural language and controlled nat-
ural language. BERL expressions are quoted in markdown
style with back-ticks so the parser can identify them. The
natural language part is processed using the entity extrac-
tor and intent classifier of Watson Assistant. The quoted
expressions are parsed using the BERL grammar of Figure 4
to produce an AST fragment.
Intents are denoted with a hash-sigil (#). RuleBot has in-

tents for BERL grammar non-terminals, such as #printAct,
#emitAct, etc. These drive dialog choices. In addition, Rule-
Bot has intents for mixed-initiative dialog, such as #fill,
#help, and #reset. Intents are detected via classifiers trained
from example utterances.

Entities are denoted with an at-sigil (@). RuleBot uses the
following three kinds of entities:
• Built-in entities that are predefined in Watson Assistant,
e.g., @number to extract numbers from user input.

• General-purpose entities, e.g., @yes and @no for yes/no an-
swers from user input.

• Application-specific entities whose definition is based on
the BMD file. Those correspond to schema or data model
information and are specific to a given application domain.
These entities are prepared by parsing the BMD file.

4.5 RuleBot Control
The dialog controller drives the conversation until the rule
is ready to be deployed. We implemented RuleBot using
ReactiveML for the orchestration part and Watson assis-
tant for the conversation part. To present the whole appli-
cation within a single formalism, we use hierarchical state
machines [9], which are commonly used as a graphical rep-
resentation of reactive programs. Figure 6 shows the Re-
activeML controllers and Figure 7 shows the Watson As-
sistant workspaces. Workspaces are invoked in particular
states of the controllers. The finite-state approach is a least
common denominator of sorts for specifying conversational
agents [18]. The user interface of Watson Assistant visual-
izes dialog logic as finite state machines (c.f. Figure 2), but
where Figure 7 renders transition triggers on arrows, Watson
Assistant renders transition triggers on nodes. We introduce
hierarchical state machine concepts as they come up.

To enable natural interactionwith the user, one key feature
of RuleBot is mixed-initiative dialogs: the conversation flow
can be directed by the application (filling AST nodes one
after the other), but the human is also able to pick the part
of the rule they want to work on (user initiative).
Process driver (Figure 6b) drives the construction of the

AST based on both user instructions and its own control logic.

REBLS ’18, November 4, 2018, Boston, MA, USA Baudart, Hirzel, Mandel, Shinnar, and Siméon

dispatch

user input

driver

reset accepted done

(a) rulebot

change
replace

e
build

(b) driver

accept accepted
filled

rule-fill
no

yes

(c) build

focus, kindchange focus /
get_focus() fill

(d) change

focus, kind

none complete

next focus /
rule_next_focus()

fill
e

(e) rule-fill

kind:event event /
update partial tree

kind:cond

kind:actions

kind:cond-
continue

kind:expr

kind:action

kind:actions-
continue

cond /
update partial tree

actions /
update partial tree

action /
update partial tree

expr /
update partial tree

cond-continue /
update partial tree

actions-continue /
update partial tree

start

(f) fill

Figure 6. RuleBot controllers

States are shown as rectangles with rounded corners labeled
by their name, and transitions are shown as arrows labeled
by their trigger. The start state, here build, has an incoming
arrow that does not originate from another node. Final states,
here also build, have a double border. The state machine is
hierarchical in the dual sense that first, individual states in
Figure 6b can contain state machines of their own (e.g., build
is presented in Figure 6c), and second, the state machine itself
constitutes a state in another one (driver in Figure 6a). In
the start state build the chatbot keeps the initiative of the
conversation. At any time during the conversation, the user
can grab the initiative by requesting a change, wich preempts
the execution of build. Preemption transitions are indicated
with a bullet. The controller then enters state change. When
the execution of change terminates, the controller enters
state build without further input (ε transition) and takes
the control back to complete the rule. The ReactiveML code
corresponding to Figure 6b is:
let rec process driver =

do run build

until replace(focus, txt) ->

run change focus txt;

run driver

done

The replace signal carries a pair (focus, text), so users can
specify the focus for the next update. For space reasons, we
only present the graphical representation of the code.
Process build (Figure 6c) coordinates the conversation

flow to fill all the nodes in the AST and then ask for con-
firmation that the rule is correct and ready for deployment.
When the execution of rule-fill terminates, RuleBot asks
the user for confirmation using the accept workspace of
Figure 7b.

Process change (Figure 6d) handles user modification re-
quests. The label of the get-focus state is written in the
form state-name / action, meaning that the action gets ex-
ecuted upon entering the state, in the fashion of a Moore
Machine. In this case, the action consists of calling a function,
get_focus(), to select the AST node to focus on based on
the user input. AST nodes are uniquely identified by a pair
(focus, kind), where focus is an integer and kind denotes the
syntactical category (e.g., event, cond, actions in Figure 4).
Process rule-fill (Figure 6e) is a loop that first selects

the next AST node to fill (next-focus state) and then updates
the rule (fill state). This is the counterpart of change when
RuleBot takes control of the conversation. Here the node
selection (function rule_next_focus()) is based on the cur-
rent partial tree and the previous node that has been filled.
We chose a heuristic to select the first undefined or rejected
node that followed the previously filled one in the pre-order
of the AST. If there is no node to fill behind the one which
has been just filled, rule_next_focus() searches a node to
fill from the beginning of the rule.

Process fill (Figure 6f) drives the conversation to the sub-
dialog that produces an AST of the expected kind. Depending
upon the selected node, RuleBot must construct different
kinds of sub-AST to complete the partial tree. The kinds
correspond to syntactic classes of the grammar. Each state
of fill triggers a workspace to builds an AST of a different
kind, and then uses a replace instruction to update the rule.
For space reasons, we only present one of the workspace for
constructing AST subtrees.
Workspace action (Figure 7c) builds an action subtree. It

uses four intents for the four action types in the BERL gram-
mar (print, emit, define, and set). The states not understood

and help display some messages and loop back to prompt

Reactive Chatbot Programming REBLS ’18, November 4, 2018, Boston, MA, USA

fill hole /
print “Ok, let’s try to fill hole number @number.”;
return replace @number

#fill and @number

fill event /
print “Let’s fill the when part of the rule.”;
return replace event

#fill and not @number
and @part:event

fill cond /
print “Sounds good.”;
return replace cond

#fill and not @number
and @part:cond

fill actions /
print “Let’s go fill the actions part of the rule.”;
return replace actions

#fill and not @number
and @part:actions

fill previous /
print “Ok, let’s try to change the previous hole.”;
return replace null

#fill and not @number
and not @part

reset prompt /
print “Are you sure you want to reset?”;
read input

reset yes /
return reset

not understood /
print “Sorry I don’t
understand?”

not @yes and
not @no

e

@yes @no

reset no

#reset

help /
print “You can edit any part of the rule by asking 'change' and giving the
number of the part to modify. You can also ask 'change when', 'change
if', or 'change then‘. You can restart with a new rule with 'reset'.”

#help

start

(a) dispatch

accept /
“The $kind is confirmed.”

@no

@yes

reject /
“The $kind is rejected.”

start /
“Do you accept the $kind $n?”

(b) accept

#printAct

@field

not @field and
not #help

e
e

#help

#emitAct

#defAct true

#setAct

true

else

#help

e

e

printAct /
print “Ok, I’m adding a new print action.”;
return [print [UNDEFINED {expression}]]

not understood /
print “I’m sorry,
I’m having trouble
understanding.”

emitAct /
print “Ok, I’m adding a new emit action.”;
return [emit [UNDEFINED {expression}]]

defAct filled /
print “Ok, I’m adding a new
definition.”;
return [define $input.text as
[UNDEFINED {expression}]]

defAct start /
print “Ok, let’s add a define action, what is
the name of the variable to be defined?”;
read input

setAct start /
print “Ok, let’s add a set action, what is the
name of the corresponding variable?”;
read input

setAct filled /
print “Okay, I’m adding a new set action.”;
return [set @field of $var to
[UNDEFINED {expression}]]

prompt /
print “What kind
of action would
you like to add?”;
read input

help /
print “The available
actions are: print,
emit, define, or set.”

start

setAct prompt /
$var = input.text;
print “What field of ‘$var’ should be set?”;
read input

help /
print “The available fields
are: account, amount,
country code, <…>.”

(c) action

Figure 7. RuleBot workspaces

without further input (ε transitions). Transitions labeled
true succeed for any user input: the input serves as a field
or variable name and is not subjected to natural-language
understanding. This workspace also illustrates a design de-
cision we made: RuleBot does not allow defining a variable
or setting a field without immediately giving the name of
the variable or field, because separating that step would be
confusing.

Process rulebot (Figure 6a), the top-level controller of the
complete chatbot, executes the driver process in parallel
with the dispatch workspace to gather user instructions.
Parallel composition is indicated by a dashed line. This pro-
cess is an advanced version of session_dispatch presented
in Section 3.3. A reset instruction preempts and restarts the
execution of driver, and the execution of the two parallel
processes ends when the user validates the rule (accepted).

Workspace dispatch (Figure 7a) analyzes each user input
and can trigger events that change the conversation flow. It
detects the intent #fill along with the AST node to modify.
The AST node can be specified by an entity @number or by the
name of the part of the rule. The workspace can also generate
a reset event after confirmation by the user. Finally, it also
handles top-level help.

5 Related Work
A popular survey on chatbot technologies identifies three
main approaches to chatbot programming and orchestra-
tion: finite-state based, frame-based, and agent-based [18].

The finite-state based approach is the most low-level, giv-
ing the programmer fine-grained control but also forcing
them to specify a lot by hand. The frame-based approach
is more high-level, letting the programmer specify slots to
be filled in, but ceding control over which slots are filled in
when to the system [3]. The agent-based approach is even
higher-level by leaving even more of the dialog control to
be planned and optimized by the system, and has been the
subject of much research over the years [18]. The VoiceXML
standard for chatbots supported both finite-state and frame-
based approach as well as subdialogs [16], but did not adopt
the agent-based approach. Similarly, the recent surge in com-
mercial platforms for authoring and hosting chatbots has
been adopting finite-state and frame-based approaches but
not agent-based approaches [20], perhaps to retain more
control over dialog flow. Most commercial chatbot platforms
are programmable via libraries in general-purpose program-
ming languages such as JavaScript, causing control to be
rather low-level. In contrast, our work uses a reactive lan-
guage, a more natural fit for the kind of control needed in a
chatbot. Watson Assistant targets low-code users by offering
graphical authoring [12]. Our work complements this with
an alternative code-based authoring approach. The RuleBot
case study in Section 4 drives the dialog from a grammar,
following a vision we sketched in earlier work [10]. For chat-
bot orchestration, consumer platforms often dispatch among
libraries of skills implemented as third-party subdialogs [1].
In contrast, since our work focuses more on enterprise plat-
forms, it provides more expressive composition.

REBLS ’18, November 4, 2018, Boston, MA, USA Baudart, Hirzel, Mandel, Shinnar, and Siméon

This paper shows that using a reactive language, namely
ReactiveML, simplifies the programming of advanced chat-
bot composition. ReactiveML is based on the reactive syn-
chronous model [4], providing a well-defined semantics of
concurrency and expressive control structures. Dataflow lan-
guages [8, 21] are reactive languages with explicit informa-
tion flow that could be useful to thread chatbot responses to
compose multiple skills. Orchestration languages like Flap-
jax [19], ORC [13], and Elm [7] might also be good candidates
to program chatbots compositions; this paper uses a reactive
synchronous language, and leaves applying those languages
on chatbots to future work.
Our case study uses a chatbot as an authoring interface

for event-processing rules. There has been some earlier work
in using controlled natural language [14] to author event-
processing rules [15]. In fact, the Operational Decision Man-
ager also adopts this approach [11]. In contrast, since chat-
bots have a natural-language understanding module, our
work does not require the natural language to be “controlled”.
There has been substantial work on natural language inter-
faces to databases [2], but that focuses on batch queries, not
event-processing rules. Besides natural language, another
approach to making event-processing rules easier to author
by low-code, non-technical users is spreadsheets [24].

6 Conclusion
This paper demonstrates that leveraging existing program-
ming languages can help to program advanced chatbot ap-
plications. We present wcs-ocaml, a lightweight embedding
of the Watson Assistant API in OCaml. Based on this library,
we show how to program advanced chatbot orchestration
in a general purpose reactive language, ReactiveML. We can
then program generic chatbot combinators as well as ad-hoc
components. To make these ideas more concrete, we describe
RuleBot, a conversational interface for authoring event pro-
cessing rules programmed in ReactiveML with wcs-ocaml.
The RuleBot case study showcases two main advantages

of our approach. First, in RuleBot, the application and Wat-
son Assistant frequently exchange complex data structures.
Using a single strongly typed programming language to pro-
gram both tiers of the application ensures the coherence
of the two tiers. Second, the RuleBot architecture relies on
parallel and hierarchical compositions of multiple chatbots
that are typically difficult to program from scratch but can
be easily expressed in ReactiveML.

References
[1] Amazon 2016. Alexa Skills Kit. Amazon. https://developer.amazon.

com/alexa-skills-kit (Retrieved 08/2018).
[2] I. Androutsopoulos, G. Ritchie, and P. Thanisch. 1995. Natural Lan-

guage Interfaces to Databases – An Introduction. Natural Language
Engineering 1, 1 (1995).

[3] D. Bobrow, R. Kaplan, M. Kay, D. Norman, H. Thompson, and T. Wino-
grad. 1977. GUS, a frame-driven dialog system. Artificial Intelligence
8, 2 (1977), 155–173.

[4] F. Boussinot. 2010. Safe Reactive Programming: The FunLoft Language.
Lambert Academic Publishing.

[5] Business Rules Group 2003. The Business Rules Manifesto: The Principles
of Rule Independence, Version 2.0. Business Rules Group. http://www.
businessrulesgroup.org/brmanifesto.php (Retrieved 08/2018).

[6] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. 2006. Links: Web Pro-
gramming Without Tiers. In Formal Methods for Components and Ob-
jects (FMCO). 266–296.

[7] E. Czaplicki and S. Chong. 2013. Asynchronous Functional Reactive
Programming for GUIs. In Conference on Programming Language De-
sign and Implementation (PLDI). 411–422.

[8] C. Elliott and P. Hudak. 1997. Functional Reactive Animation. In
International Conference on Functional Programming (ICFP). 263–273.

[9] D. Harel. 1987. StateCharts: A Visual Formalism for Complex Systems.
Science of Computer Programming 8, 3 (1987), 231–274.

[10] Martin Hirzel, Louis Mandel, Avraham Shinnar, Jérôme Siméon, and
Mandana Vaziri. 2017. I Can Parse You: Grammars for Dialogs. In
Summit oN Advances in Programming Languages (SNAPL). 6:1–6:15.

[11] IBM 2014. Operational Decision Manager Tutorial: Get-
ting started with Decision Server Insights. IBM. https:
//www.ibm.com/support/knowledgecenter/SSQP76_8.9.2/com.
ibm.odm.itoa.tutorial/topics/itoa_tut_intro.html (Retrieved 08/2018).

[12] IBM 2018. Overview of Watson Assistant. IBM. https://console.bluemix.
net/docs/services/conversation/index.html (Retrieved 08/2018).

[13] D. Kitchin, A. Quark, W. Cook, and J. Misra. 2009. The Orc Program-
ming Language. In Proceedings of FMOODS/FORTE 2009. 1–25.

[14] T. Kuhn. 2014. A Survey and Classification of Controlled Natural
Languages. Computational Linguistics 40, 1 (2014), 121–170.

[15] M. Linehan, S. Dehors, E. Rabinovich, and F. Fournier. 2011. Con-
trolled English Language for Production and Event Processing Rules.
In Conference on Distributed Event-Based Systems (DEBS). 149–158.

[16] B. Lucas. 2000. VoiceXML for Web-based Distributed Conversational
Applications. Commun. ACM 43, 9 (2000), 53–57.

[17] L.Mandel, C. Pasteur, andM. Pouzet. 2015. ReactiveML, Ten Years Later.
In Symposium on Principles and Practice of Declarative Programming
(PPDP). 6–17.

[18] M. McTear. 2002. Spoken dialogue technology: Enabling the conversa-
tional interface. Comput. Surveys 34, 1 (2002), 90–169.

[19] L. Meyerovich, A. Guha, J. Baskin, G. Cooper, M. Greenberg, A. Brom-
field, and S. Krishnamurthi. 2009. Flapjax: A Programming Language
for Ajax Applications. In Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

[20] A. Patil, K. Marimuthu, R. Niranchana, et al. 2017. Comparative study
of cloud platforms to develop a Chatbot. International Journal of
Engineering & Technology 6, 3 (2017), 57–61.

[21] M. Pouzet. 2006. Lucid Synchrone, version 3. Tutorial and reference
manual. Université Paris-Sud, LRI.

[22] M. Serrano and G. Berry. 2012. Multitier Programming in Hop. Com-
mun. ACM 55, 8 (Aug. 2012), 53–59.

[23] Spring. 2018. Spring Expression Language (SpEL). https://docs.spring.
io/spring-framework/docs/current/spring-framework-reference/
core.html#expressions (Retrieved 08/2018).

[24] Mandana Vaziri, Olivier Tardieu, Rodric Rabbah, Philippe Suter, and
Martin Hirzel. 2014. Stream Processingwith a Spreadsheet. In European
Conference on Object-Oriented Programming (ECOOP). 360–384.

[25] J. Williams, N. Niraula, P. Dasigi, A. Lakshmiratan, C. Suarez, M. Reddy,
and G. Zweig. 2015. Rapidly Scaling Dialog Systems with Interactive
Learning. In InternationalWorkshop on Spoken Dialog Systems (IWSDS).

[26] Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni Potdar, Yu
Cheng, Gerald Tesauro, Haoyu Wang, and Bowen Zhou. 2018. Diverse
Few-Shot Text Classification with Multiple Metrics. arXiv preprint
arXiv:1805.07513 (2018).

https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
http://www.businessrulesgroup.org/brmanifesto.php
http://www.businessrulesgroup.org/brmanifesto.php
https://www.ibm.com/support/knowledgecenter/SSQP76_8.9.2/com.ibm.odm.itoa.tutorial/topics/itoa_tut_intro.html
https://www.ibm.com/support/knowledgecenter/SSQP76_8.9.2/com.ibm.odm.itoa.tutorial/topics/itoa_tut_intro.html
https://www.ibm.com/support/knowledgecenter/SSQP76_8.9.2/com.ibm.odm.itoa.tutorial/topics/itoa_tut_intro.html
https://console.bluemix.net/docs/services/conversation/index.html
https://console.bluemix.net/docs/services/conversation/index.html
https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions
https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions
https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions

	Abstract
	1 Introduction
	2 Generating Multi-tier Chatbots
	2.1 Programming Watson Assistant
	2.2 Programming the Application

	3 Reactive Orchestration
	3.1 ReactiveML
	3.2 Chatbot State Machines
	3.3 Chatbot Dispatch

	4 Case Study: RuleBot
	4.1 ODM Insights
	4.2 RuleBot Overview
	4.3 Building the Rule
	4.4 Natural Language Understanding
	4.5 RuleBot Control

	5 Related Work
	6 Conclusion
	References

