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Abstract

Synchrony and asynchrony are commonly opposed

to each other. Now, in embedded applications, ac-

tual solutions are often situated in between, with syn-

chronous processes composed in a partially asynchronous

way. Examples of such intermediate solutions are GALS,

quasi-synchronous periodic processes, deadline-driven task

scheduling. . . In this paper, we illustrate the use of the syn-

chronous paradigm to model and validate such partially

asynchronous applications. We show that, through the use

of sporadic activation of processes and simulation of non-

determinism by the way of auxiliary inputs, the synchronous

paradigm allows a precise control of asynchrony. The ap-

proach is illustrated on a real case study, proposed in the

framework of the European Integrated project “Assert”.

1 Introduction

It is well admitted, now, that the synchronous

paradigm [4, 20] can significantly ease the modeling, pro-

gramming, and validation of embedded systems and soft-

ware. The synchronous parallel composition helps in struc-

turing the model, without introducing non-determinism.

The determinism of the model is also an invaluable advan-

tage for its validation: tests are reproducible, and model-

checking is not faced with the proliferation of states due to

non-deterministic interleaving of processes.

It is also recognized that the synchronous paradigm is

not the panacea, since it does not directly apply to intrinsi-

cally asynchronous situations, such as distributed systems,

or applications mixing long tasks and urgent sporadic re-

quests. This is why numerous works (see, e.g., [7] for a

synthesis) are devoted to combining synchrony with asyn-

chrony, or to extending the synchronous model towards less
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synchronous applications. For instance, “Communicating

reactive processes” [11] or “Multiclock Esterel” [10] are

extensions of the synchronous language Esterel [8] to cope

with non perfectly synchronous concurrency. On the other

hand, the paradigm of “Globally asynchronous, locally syn-

chronous systems” (GALS) has been proposed [16, 1, 9]

to describe general asynchronous systems, while keeping

as much as possible the advantages of synchronous com-

ponents. “Tag machines” [6, 5] are an even more general

and abstract attempt in the same direction. [17] mixes syn-

chronous (Signal) and asynchronous (Promela) models for

verifying GALS.

Another track of research addresses the compilation of

synchronous programs towards distributed or non strictly

synchronous code. While some distribution methods aim

at strictly preserving the synchronous semantics [13, 12],

other proposals only preserve the functional semantics [14,

15, 27, 26].

Finally, other works concern the modeling of asyn-

chronous systems within the synchronous paradigm. It

is well-known since [24, 25] that a synchronous formal-

ism can be used to express asynchrony. The only need

is to express sporadic activation (or stuttering) of pro-

cesses — which is allowed in all existing synchronous lan-

guages — and explicit non-determinism. The modeling

tool Model-Build [2, 3] — developed within the European

projects SafeAir and SafeAir2 — and the Polychrony work-

bench [23, 19, 18] are based on this idea. In this paper, we

report on our use of this kind of approach in the framework

of the Assert project.

Assert is a European Integrated Project devoted to the

design of embedded systems from the system architecture

level down to the code, with special emphasis on high-

level modeling, proof-based design, and component reuse.

Aerospace industry (avionics, launchers, and satellites) con-

stitutes the main application domain of Assert. In this

framework, we propose a methodology based on a high-

level behavioral modeling and verification of an application,

using a synchronous formalism. Since the automatic gener-

ation of distributed code is not an objective of the project,

the automatic code generation is only applied separately to
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Abstract

Architecture Description Languages (ADLs) allow embedded systems to be described as as-

semblies of hardware and software components. It is attractive to use such a global modelling

as a basis for early system analysis. However, in such descriptions, the applicative software is

often abstracted away, and is supposed to be developed in some host programming language.

This forbids to take the applicative software into account in such early validation. To over-

come this limitation, a solution consists in translating the ADL description into an executable

model, which can be simulated and validated together with the software. In a previous pa-

per [8], we proposed such a translation of AADL (Architecture Analysis & Design Language)

specifications into an executable synchronous model. The present paper is a continuation of

this work, and deals with expressing the behavior of complex scheduling policies managing

shared resources. We provide a synchronous specification for two shared resource schedul-

ing protocols: the well-known basic priority inheritance protocol (BIP), and the priority ceil-

ing protocol (PCP). This results in an automated translation of AADL models into a purely

Boolean synchronous (Lustre) scheduler, that can be directly model-checked, possibly with

the actual software.
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Abstract  

Modern defense systems are complex distributed 
software systems implemented over heterogeneous 
and constantly evolving hardware and software 
platforms. Distributed agreement protocols are often 
developed exploiting the fact that their systems are 
quasi-synchronous, where even though the clocks of 
the different nodes are not synchronized, they all run 
at the same rate, or multiples of the same rate, 
modulo their drift and jitter. 

This paper describes an effort to provide systems 
designers and engineers with an intuitive modeling 
environment that allows them to specify the high-
level architecture and synchronization logic of quasi-
synchronous systems using widely available systems-
engineering notations and tools. To this end, a 
translator was developed that translates system 
architectural models specified in a subset of SysML 
into the Architectural Analysis and Description 
Language (AADL). Translators were also developed 
that translate the AADL models into the input 
language of the Uppaal and Kind model checkers.  

The Uppaal model checker. supports the 
modeling, verification, and validation of real-time 
systems modeled as a network of timed automata. 
This paper focuses on the challenges encountered in 
translating from AADL to Uppaal, and illustrates the 
overall approach with a common avionics example: 
the Pilot Flying System. 

Keywords: AADL, quasi-synchronous, model 
checking, verification, Uppaal, Pilot Flying system. 

Introduction  

Modern defense systems are complex software 
systems implemented over heterogeneous and 
constantly evolving hardware and software platforms. 
Due to the failure rates of individual hardware 
components, critical functions must be implemented 
as redundant, fault-tolerant systems in order to meet 

their reliability requirements. This is achieved by 
distributing these functions over multiple processing 
components connected by fault-tolerant networks. 
When a system is replicated to achieve a high level of 
reliability, the individual components still need to 
agree on some part of the global system state, such as 
which node is the current leader. While the amount of 
state that needs to be consistent is often small, the 
required consistency is essential for the correct 
behavior of the system.   

In developing distributed agreement protocols, 
engineers often exploit the fact that their systems are 
quasi-synchronous, where even though the clocks of 
the different nodes are not synchronized, they all run 
at the same rate, or multiples of the same rate, 
modulo their drift and jitter. While such designs often 
appear to work correctly at first, their intrinsic 
asynchrony makes them prone to race and deadlock 
conditions. These latent design errors often do not 
appear until late in system integration or even after 
the system is deployed.  

This paper describes an effort to provide systems 
designers and engineers with an intuitive modeling 
environment that allows them to specify the high-
level architecture and synchronization logic of quasi-
synchronous systems using widely available system-
engineering notations and tools. A translator was 
developed that translates system architectural models 
specified in a subset of the SysML systems 
engineering modeling language into the Architectural 
Analysis and Description Language (AADL). 
Translators were also developed that translate the 
AADL models into the input language of the Uppaal 
[1] and Kind [2] model checkers. Example quasi-
synchronous systems were created in SysML and 
automatically translated into AADL, Kind, and 
Uppaal. The Kind and Uppaal model checkers were 
then used to verify these systems’ distributed 
agreement protocols.  
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Modern defense systems are complex software 
systems implemented over heterogeneous and 
constantly evolving hardware and software platforms. 
Due to the failure rates of individual hardware 
components, critical functions must be implemented 
as redundant, fault-tolerant systems in order to meet 

their reliability requirements. This is achieved by 
distributing these functions over multiple processing 
components connected by fault-tolerant networks. 
When a system is replicated to achieve a high level of 
reliability, the individual components still need to 
agree on some part of the global system state, such as 
which node is the current leader. While the amount of 
state that needs to be consistent is often small, the 
required consistency is essential for the correct 
behavior of the system.   

In developing distributed agreement protocols, 
engineers often exploit the fact that their systems are 
quasi-synchronous, where even though the clocks of 
the different nodes are not synchronized, they all run 
at the same rate, or multiples of the same rate, 
modulo their drift and jitter. While such designs often 
appear to work correctly at first, their intrinsic 
asynchrony makes them prone to race and deadlock 
conditions. These latent design errors often do not 
appear until late in system integration or even after 
the system is deployed.  

This paper describes an effort to provide systems 
designers and engineers with an intuitive modeling 
environment that allows them to specify the high-
level architecture and synchronization logic of quasi-
synchronous systems using widely available system-
engineering notations and tools. A translator was 
developed that translates system architectural models 
specified in a subset of the SysML systems 
engineering modeling language into the Architectural 
Analysis and Description Language (AADL). 
Translators were also developed that translate the 
AADL models into the input language of the Uppaal 
[1] and Kind [2] model checkers. Example quasi-
synchronous systems were created in SysML and 
automatically translated into AADL, Kind, and 
Uppaal. The Kind and Uppaal model checkers were 
then used to verify these systems’ distributed 
agreement protocols.  
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Abstract

Synchrony and asynchrony are commonly opposed

to each other. Now, in embedded applications, ac-

tual solutions are often situated in between, with syn-

chronous processes composed in a partially asynchronous

way. Examples of such intermediate solutions are GALS,

quasi-synchronous periodic processes, deadline-driven task

scheduling. . . In this paper, we illustrate the use of the syn-

chronous paradigm to model and validate such partially

asynchronous applications. We show that, through the use

of sporadic activation of processes and simulation of non-

determinism by the way of auxiliary inputs, the synchronous

paradigm allows a precise control of asynchrony. The ap-

proach is illustrated on a real case study, proposed in the

framework of the European Integrated project “Assert”.

1 Introduction

It is well admitted, now, that the synchronous

paradigm [4, 20] can significantly ease the modeling, pro-

gramming, and validation of embedded systems and soft-

ware. The synchronous parallel composition helps in struc-

turing the model, without introducing non-determinism.

The determinism of the model is also an invaluable advan-

tage for its validation: tests are reproducible, and model-

checking is not faced with the proliferation of states due to

non-deterministic interleaving of processes.

It is also recognized that the synchronous paradigm is

not the panacea, since it does not directly apply to intrinsi-

cally asynchronous situations, such as distributed systems,

or applications mixing long tasks and urgent sporadic re-

quests. This is why numerous works (see, e.g., [7] for a

synthesis) are devoted to combining synchrony with asyn-

chrony, or to extending the synchronous model towards less
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‡Verimag is a joint laboratory of Université Joseph Fourier, CNRS and
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synchronous applications. For instance, “Communicating

reactive processes” [11] or “Multiclock Esterel” [10] are

extensions of the synchronous language Esterel [8] to cope

with non perfectly synchronous concurrency. On the other

hand, the paradigm of “Globally asynchronous, locally syn-

chronous systems” (GALS) has been proposed [16, 1, 9]

to describe general asynchronous systems, while keeping

as much as possible the advantages of synchronous com-

ponents. “Tag machines” [6, 5] are an even more general

and abstract attempt in the same direction. [17] mixes syn-

chronous (Signal) and asynchronous (Promela) models for

verifying GALS.

Another track of research addresses the compilation of

synchronous programs towards distributed or non strictly

synchronous code. While some distribution methods aim

at strictly preserving the synchronous semantics [13, 12],

other proposals only preserve the functional semantics [14,

15, 27, 26].

Finally, other works concern the modeling of asyn-

chronous systems within the synchronous paradigm. It

is well-known since [24, 25] that a synchronous formal-

ism can be used to express asynchrony. The only need

is to express sporadic activation (or stuttering) of pro-

cesses — which is allowed in all existing synchronous lan-

guages — and explicit non-determinism. The modeling

tool Model-Build [2, 3] — developed within the European

projects SafeAir and SafeAir2 — and the Polychrony work-

bench [23, 19, 18] are based on this idea. In this paper, we

report on our use of this kind of approach in the framework

of the Assert project.

Assert is a European Integrated Project devoted to the

design of embedded systems from the system architecture

level down to the code, with special emphasis on high-

level modeling, proof-based design, and component reuse.

Aerospace industry (avionics, launchers, and satellites) con-

stitutes the main application domain of Assert. In this

framework, we propose a methodology based on a high-

level behavioral modeling and verification of an application,

using a synchronous formalism. Since the automatic gener-

ation of distributed code is not an objective of the project,

the automatic code generation is only applied separately to
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Abstract

Architecture Description Languages (ADLs) allow embedded systems to be described as as-

semblies of hardware and software components. It is attractive to use such a global modelling

as a basis for early system analysis. However, in such descriptions, the applicative software is

often abstracted away, and is supposed to be developed in some host programming language.

This forbids to take the applicative software into account in such early validation. To over-

come this limitation, a solution consists in translating the ADL description into an executable

model, which can be simulated and validated together with the software. In a previous pa-

per [8], we proposed such a translation of AADL (Architecture Analysis & Design Language)

specifications into an executable synchronous model. The present paper is a continuation of

this work, and deals with expressing the behavior of complex scheduling policies managing

shared resources. We provide a synchronous specification for two shared resource schedul-

ing protocols: the well-known basic priority inheritance protocol (BIP), and the priority ceil-

ing protocol (PCP). This results in an automated translation of AADL models into a purely
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Abstract  

Modern defense systems are complex distributed 
software systems implemented over heterogeneous 
and constantly evolving hardware and software 
platforms. Distributed agreement protocols are often 
developed exploiting the fact that their systems are 
quasi-synchronous, where even though the clocks of 
the different nodes are not synchronized, they all run 
at the same rate, or multiples of the same rate, 
modulo their drift and jitter. 

This paper describes an effort to provide systems 
designers and engineers with an intuitive modeling 
environment that allows them to specify the high-
level architecture and synchronization logic of quasi-
synchronous systems using widely available systems-
engineering notations and tools. To this end, a 
translator was developed that translates system 
architectural models specified in a subset of SysML 
into the Architectural Analysis and Description 
Language (AADL). Translators were also developed 
that translate the AADL models into the input 
language of the Uppaal and Kind model checkers.  

The Uppaal model checker. supports the 
modeling, verification, and validation of real-time 
systems modeled as a network of timed automata. 
This paper focuses on the challenges encountered in 
translating from AADL to Uppaal, and illustrates the 
overall approach with a common avionics example: 
the Pilot Flying System. 

Keywords: AADL, quasi-synchronous, model 
checking, verification, Uppaal, Pilot Flying system. 

Introduction  

Modern defense systems are complex software 
systems implemented over heterogeneous and 
constantly evolving hardware and software platforms. 
Due to the failure rates of individual hardware 
components, critical functions must be implemented 
as redundant, fault-tolerant systems in order to meet 

their reliability requirements. This is achieved by 
distributing these functions over multiple processing 
components connected by fault-tolerant networks. 
When a system is replicated to achieve a high level of 
reliability, the individual components still need to 
agree on some part of the global system state, such as 
which node is the current leader. While the amount of 
state that needs to be consistent is often small, the 
required consistency is essential for the correct 
behavior of the system.   

In developing distributed agreement protocols, 
engineers often exploit the fact that their systems are 
quasi-synchronous, where even though the clocks of 
the different nodes are not synchronized, they all run 
at the same rate, or multiples of the same rate, 
modulo their drift and jitter. While such designs often 
appear to work correctly at first, their intrinsic 
asynchrony makes them prone to race and deadlock 
conditions. These latent design errors often do not 
appear until late in system integration or even after 
the system is deployed.  

This paper describes an effort to provide systems 
designers and engineers with an intuitive modeling 
environment that allows them to specify the high-
level architecture and synchronization logic of quasi-
synchronous systems using widely available system-
engineering notations and tools. A translator was 
developed that translates system architectural models 
specified in a subset of the SysML systems 
engineering modeling language into the Architectural 
Analysis and Description Language (AADL). 
Translators were also developed that translate the 
AADL models into the input language of the Uppaal 
[1] and Kind [2] model checkers. Example quasi-
synchronous systems were created in SysML and 
automatically translated into AADL, Kind, and 
Uppaal. The Kind and Uppaal model checkers were 
then used to verify these systems’ distributed 
agreement protocols.  
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For the quasi-synchronous 
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DT |= ϕ.l, RT |= ϕ



Quasi-Periodic Architectures

• A set of “quasi-periodic” processes with local clocks and 

nominal period      (jitter  )  

 

 

 

                  clock activations  

• Buffered communication without message inversion or loss 
• Bounded communication delay 

or0 < Tmin ≤ T
n

≤ Tmax

T
n
− ε ≤ κi − κi−1 ≤ T

n
+ ε

(κi)i∈N

τmin ≤ τ ≤ τmax

T
n

ε

Definition (Quasi-Periodic Architecture): 



Definition (Trace): A (quasi-periodic) trace    is a set of activation 

events                                and two functions  

•          the date of event 

•              the transmission delay of message sent at     to B

• t(Ai),• i

• τ(Ai, B),

{Ai | A ∈ N ∧ i ∈ N}
e E

0 < Tmin ≤ t(Ai+1)− t(Ai) ≤ Tmax, a

0 < τmin ≤ τ(Ai, B) ≤ τmax.

t Ai

For a quasi-periodic trace we have

Quasi-Periodic Architectures



Quasi-Periodic Architectures

Definition (Happened Before): For a trace   , let     be the smallest 

relation on activation events that satisfies 

(local)  If 

(recv)   If                                         then

et →

If i ≤ 0, Ai → Ai+1,If i ≤ 0, Ai → Ai+1,

If t(Ai) + τ(Ai, B) ≤ t(Bj)

e E

en Ai → Bj, a

Message receptions are not explicitly modelled.
Node are only triggered by their local clock

[Lamport 1978]
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Something is missing…

What about execution and transmission time?

τexec

τtrans

τ = τexec + τtrans

τexec

τtrans
τtrans

τexec < Tmin

unit-delay
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and A ◆ B.             Node A communicate with node B

Unitary Discretization

Definition (Unitary Discretization): A function                    that 

assigns each event in a (real-time) trace to a logical instant of a 

corresponding discrete trace, is a unitary discretization if:

n f : E → N

and∀Ai, Bj ∈ E , Ai → Bj ⇐⇒ f(Ai) < f(Bj) and A ◆ B.

Problem: Are quasi-periodic architectures unitary discretizable?

Map real-time and synchronous causality
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Unitary Discretization

Twisting the tick?

Some traces cannot be unitary discretized
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Vertices: Activations of the nodes 

Edges:
•  If                 then 
•  If              and                 then

If Ai ! Bj
−!
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0
−! Ai.and A ◆ B.

en Ai
1
−! Bj, a

Proposition: If   is a unitary discretization for a 

trace, for a pair of nodes where             we have thatand A ◆ B.

Ai ! Bj =) f(Ai) < f(Bj), a

Ai 6! Bj =) f(Ai) ≥ f(Bj).

If f
ve th

Ai
1
−! Bj =) f(Ai) < f(Bj), an

Bj
0
−! Ai =) f(Bj)  f(Ai).
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Constraining Communications

Lemma: For a trace, there exists a unitary discretization 

if and only if the corresponding graph has no cycle of 

positive weight

Proof:
• If there is a cycle of positive weight, there is an  

event       such that  

• Otherwise, the function that maps each event      to the        

longest path that lead to      is a unitary discretization

ction of G there
, f(Ai) < f(Ai),on Ai

on Ai

on Ai

Ai
1
−→ Bj =⇒ f(Ai) < f(Bj), an

Bj
0
−→ Ai =⇒ f(Bj) ≤ f(Ai).

Leave room for all the predecessors…



Constraining Communications

Proposition: A cycle of positive weight can be reduced 

to a cycle of positive weight based on a u-cycle of the 

communication graph.

A B

D C

A B

C

A B

D C

u-cycle: cycle of the undirected communication graph

Cycle Unbalanced Balanced



Theorem: A quasi-periodic architecture is unitary discretizable 

if and only if 

1. all u-cycle of the communication graph are either cycles or 

balanced u-cycle, and, 

2. there is no balanced u-cycle in the communication graph 

or                      , and, 

3.  there is no cycle in the communication graph, or

Constraining Communications

r τmin = τmax, a

Tmin ≥ Lcτmax

: size of the longest elementary communication cycleere Lc
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The Quasi-Synchronous Abstraction

But there is no direct link between discrete- and real-time

Definition (n-Quasi-Synchrony): A quasi-periodic architecture is 

n-quasi-synchronous if for every trace t   

1. there exists a unitary discretization   , and 

2. for any node             , there is no chain of activation of length 

greater than n, that is no i and j such that 

f(Bj) < f(Ai) < · · · < f(Ai+n) ≤ f(Bj+1)

f(Aj) ≤ f(Bi) < · · · < f(Bi+n) < f(Aj+1).

unitary di

es A ✓ B,

n f , a
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·
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f

]

∗

·
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f

t

]◆n

,

The boolean vector associated to nodes A and B never contains 

either of the subsequences

Condition 2.Condition 1.



Theorem: A quasi-periodic architecture is n-quasi-synchronous 

if and only if 

1. the conditions for unitary discretizability hold, and, 

2.    coucou

The Quasi-Synchronous Abstraction

nTmin + τmin ≥ Tmax + τmax.

Tmin

Tmax

τmax

τmin

Tmin…
(n+1) times

Worst-case scenario
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