Soundness of the
Quasi-Synchronous Abstraction

Guillaume Baudart Timothy Bourke Marc Pouzet

Ecole normale supérieure, INRIA Paris

e Cooking Book

\' VERIMAG
\/ UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate
38610 GIERES

Tel. +33 4 76 63 48 48
Fax +33 4 76 63 48 50

The Quasi-Synchronous Approach to
Distributed Control Systems

Crisys draft

October 2000

Centre National de la Recherche Scientifique Universite Joseph Fourier Institut National Polytechnique de Grenoble

The Cooking Book

Chapter 2

The Architectural Evolution

Aircraft control systems illustrate this evolution which can also be found in
many other fields of industrial control

2.1 Analog/Digital Communication

Starting from networks of analog boards, progressively some boards were re-
placed by discrete digital boards, and then by computers. Communication
between the digital parts and the parts which remained analog was mainly
based on periodic sampling (analog to digital conversion) and holding (dig-
ital to analog conversion), sampling periods being adapted to the frequency
properties of the signals that traveled through the network. This allowed sev-
eral technologies to smoothly cooperate. Figure 2.1 illustrates this evolution.

2.2 Serial Links

This technique was suitable up to the time when two connected analog boards
were replaced by digital ones. Then these two also had to communicate
and serial port communication appeared as the simplest way of replacing
analog to digital and digital to analog communication as both can be seen as
latches or memories. Figure 2.2 shows a typical situation borrowed from an
automatic subway application. Each computer monitors a rail track section
and runs a periodic program. Computers are linked together by serial lines

ot

8 Crisys Esprit Project

2.4 Supervision

In most cases, this architecture is being added a supervisor, for monitoring
purposes. The communication between the supervisor and field computers is
however very different from the communication between field computers. It
is an event-based communication which is assumed not to be time nor safety
critical and which takes place either on special time slots of the field bus, or
on a dedicated communication medium. The important fact, here, is that it
should not perturbate neither the periodic behavior of field computers, nor
their communication.

2.5 Provision against Byzantine Problems

In these very critical systems, Byzantine faults cannot be neglected and this
is why some architectural precautions have to be taken in order to allevi-
ate their consequences. For instance, these busses provide some protection
against Byzantine problems [22], in the sense that they are based on broad-
cast: communication with several partners only involve one emission. Thus a
failed unit cannot diversely lie to its partners. Then messages are protected
by either error correcting and/or detecting codes which can be assumed to
be powerful enough so that their failing be negligible with respect to the
probabilistic fault tolerance requirements of the system under consideration.

2.6 Communication Abstraction

According to what precedes, we can quite precisely state an abstract property
of this kind of communication medium, which is a bounded delay communi-
cation property:
Property 1. First, we assume that every process P is periodic with a period
varying between small margins:
Tpm <Tp <Tpu
Then,

Property 2. Let Top and Typr be the respective mazimal periods of the
sender and of the receiver, and n the mazimum number of non negligible
consecutive failed receives (in the case of error correction, n =1).

The Cooking Book

Chapter 2

The Architectural Evolution

Aircraft control systems illustrate this evolution which can also be found in
many other fields of industrial control

8 Crisys Esprit Project

2.4 Supervision

In most cases, this architecture is being added a supervisor, for monitoring
purposes. The communication between the supervisor and field computers is
however very different from the communication between field computers. It
is an event-based communication which is assumed not to be time nor safety
critical and which takes place either on special time slots of the field bus, or
on a dedicated communication medium. The important fact, here, is that it
should not perturbate neither the periodic behavior of field computers, nor
their communication.

2.5 Provision against Byzantine Problems

In these very critical systems, Byzantine faults cannot be neglected and this
is whv some architectural precautions have to be taken in order to allevi-

Property 1. First, we assume that every process P 1s periodic with a pertod
varying between small margins:

Tpm <Tp <Tpy

This technique was suitable up to the time when two connected analog boards
were replaced by digital ones. Then these two also had to communicate
and serial port communication appeared as the simplest way of replacing
analog to digital and digital to analog communication as both can be seen as
latches or memories. Figure 2.2 shows a typical situation borrowed from an
automatic subway application. Each computer monitors a rail track section
and runs a periodic program. Computers are linked together by serial lines

ot

varying between small margins:
Tpm <Tp < Tpy

Then,

Property 2. Let Top and Typr be the respective mazimal periods of the
sender and of the receiver, and n the mazimum number of non negligible
consecutive failed receives (in the case of error correction, n = 1).

The Cooking Book

8 Crisys Esprit Project

2.4 Supervision

In most cases, this architecture is being added a supervisor, for monitoring

purposes. The communication between the supervisor and field computers is

however very different from the communication between field computers. It

Ch t 2 is an event-based communication which is assumed not to be time nor safety
ap er critical and which takes place either on special time slots of the field bus, or

on a dedicated communication medium. The important fact, here, is that it

should not perturbate neither the periodic behavior of field computers, nor

The AI‘Chit ect ura]_ EVO]_ut ion their communication.

2.5 Provision against Byzantine Problems

Aircraft control systems illustrate this evolution which can also be found in

. . In these very critical systems, Byzantine faults cannot be neglected and this
many other fields of industrial control

is whv some architectural precautions have to be taken in order to allevi-

Property 1. First, we assume that every process P 1s periodic with a pertod
varying between small margins:

Quagi-peri ' .
ITpm <1p <Tpum odie Ar Chitectyre

. . . . wamjmg between small margins:
This technique was suitable up to the time when two connected analog boards

were replaced by digital ones. Then these two also had to communicate Tpm <Tp < Tpy
and serial port communication appeared as the simplest way of replacing

analog to digital and digital to analog communication as both can be seen as Then,

latches or memories. Figure 2.2 shows a typical situation borrowed from an Property 2. Let Top and Typr be the respective mazimal periods of the
automatic subway application. Each computer monitors a rail track section sender and of the receiver, and n the mazimum number of non negligible
and runs a periodic program. Computers are linked together by serial lines consecutive failed receives (in the case of error correction, n = 1).

ot

The Cooking Book

Chapter 3

A Synchronous Tool set for
Quasi-Synchronous Systems

In this chapter we show how synchronous design tools allow a global sys-
tem description, simulation and validation. We first describe our notation.
Then we show how to describe systems implemented on a quasi-synchronous
architecture and how to simulate them.

3.1 Synchronous Data-Flow Notations

In the sequel, algorithms are expressed using a functional notation, that is to
say by abstracting over time indices, in order to stay consistent with design

tools. Thus, a signal definition:

T = 2o means Vn € N : z1(nT) = z2(nT).

3.1.1 Usual Operators

An operation:
(x1 — 29)(nT) means x1(nT) — x2(nT)

and similarly,

11

Quasi-Synchronous Approach 15

3.2.1 Shared Memory

Given a sequence u written in the shared memory at clock cw and an initial
content v, the current content of the memory can be expressed as:

mem (v, cw,u) = v £by (current(v, cw) u)

where the delay accounts for short? undetermined transmission delays.
Then, the sequence read at clock er is :

' = mem(v, cw,u) when cr

3.2.2 Formalizing Periodic Clocks

This could be done in some real-time framework, such as timed automata [2],
but, for the sake of simplicity, we prefer here to characterize the fact that
two independent clocks have approximately the same period by saying that:

Any of the two clocks cannot take the value “t"more than twice between
two successive “t” wvalues of the other one.

This can be formalized by saying that the boolean vector stream com-
posed of the two clocks should never contain the subsequence:

AT LA
St A N N O e
nor the one obtained by exchanging coordinates. (Here, — is a wild card
representing any of the two values {t, f}.)

Now, such regular expressions yield finite state recognizability and can
be associated a finite-state recognizing dynamic system Same_Periods®.

Furthermore, replacing in what precedes 2 by n allows defining similar
Same_Period, systems.

2Significantly shorter than the periods of read and write clocks. If longer transmission
delays are needed, modeling should be more complex.
3This can be automatically generated in Lustre, thanks to the REGLO tool [23].

The Cooking Book

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

Chapter 3 v v MUy Cw; W) ="0"Tby (CUrrent(v; cw) 1)

where the delay accounts for short? undetermined transmission delays.
Then, the sequence read at clock er is :

A Synchronous Tool set for
Quasi-Synchronous Systems

' = mem(v, cw,u) when cr

3.2.2 Formalizing Periodic Clocks

In this chapter we show how synchronous design tools allow a global sys- This could be done in some real-time framework, such as timed automata [2],
tem description, simulation and validation. We first describe our notation. but, for the sake of simplicity, we prefer here to characterize the fact that
Then we show how to describe systems implemented on a quasi-synchronous two independent clocks have approximately the same period by saying that:

architecture and how to simulate them.
Any of the two clocks cannot take the value “t"more than twice between
two successive “t” wvalues of the other one.
3.1 Synchronous Data-Flow Notations
. . o . . This can be formalized by saying that the boolean vector stream com-
In the sequel, algorithms are expressed using a functional notation, that is to posed of the two clocks should never contain the subsequence:
say by abstracting over time indices, in order to stay consistent with design

tools. Thus, a signal definition: [:] [f]* { " } [f]* { ¢]
B T A A A

T = 2o means Vn € N : z1(nT) = z2(nT).
nor the one obtained by exchanging coordinates. (Here, — is a wild card
representing any of the two values {t, f}.)
3.1.1 Usual Operators Now, such regular expressions yield finite state recognizability and can
be associated a finite-state recognizing dynamic system Same_Periods®.
Furthermore, replacing in what precedes 2 by n allows defining similar
Same_Period, systems.

An operation:

(x1 — 29)(nT) means x1(nT) — x2(nT)

L 2Significantly shorter than the periods of read and write clocks. If longer transmission
and similarly, delays are needed, modeling should be more complex.
3This can be automatically generated in Lustre, thanks to the REGLO tool [23].

11

The Cooking Book

Any of the two clocks cannot take the value “t "more than twice between

two successive “t” values of the other one.
Chanter 3 -

This can be formalized by saying that the boolean vector stream com-
posed of the two clocks should never contain the subsequence:

MUy Cw; W) ="0"Tby (CUrrent(v; cw) 1)

ES

t]l [F17 [t f t
B S I I Y I A

nor the one obtained by exchanging coordinates. (Here, — is a wild card
representing any of the two values {t, f}.)
Now, such regular expressions yield finite state recognizability and can
. be associated a finite-state recognizing dynamic system Same_Periods®.
An operation: L L. -
Furthermore, replacing in what precedes 2 by n allows defining similar
Same_Period, systems.

3.1.1 Usual Operators

(x1 — 29)(nT) means x1(nT) — x2(nT)

2Significantly shorter than the periods of read and write clocks. If longer transmission
delays are needed, modeling should be more complex

and similarly, X.
3This can be automatically generated in Lustre, thanks to the REGLO tool [23].

11

The Cooking Book

Any of the two clocks cannot take the value “t "more than twice between

two successive “t” values of the other one.
Chanter 3 -

This can be formalized by saying that the boolean vector stream com-
posed of the two clocks should never contain the subsequence:

MUy Cw; W) ="0"Tby (CUrrent(v; cw) 1)

* * QUQ :
t f t f t $~Q

nor the one obtained by exchanging coordinates. (Here, — is a wild card
representing any of the two values {t, f}.)
Now, such regular expressions yield finite state recognizability and can
. be associated a finite-state recognizing dynamic system Same_Periods®.
An operation: L L. -
Furthermore, replacing in what precedes 2 by n allows defining similar
Same_Period, systems.

3.1.1 Usual Operators

(x1 — 29)(nT) means x1(nT) — x2(nT)

2Significantly shorter than the periods of read and write clocks. If longer transmission
delays are needed, modeling should be more complex

and similarly, X.
3This can be automatically generated in Lustre, thanks to the REGLO tool [23].

11

The Cooking Book

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

Chﬂnter 3 ’ y MUy Cw; W) ="0"Tby (CUrrent(v; cw) 1)

This can be formalized by saying that the boolean vector stream com-
posed of the two clocks should never contain the subsequence:

LIBTLIET] e

nor the one obtained by exchanging coordinates. (Here, — is a wild card
representing any of the two values {t, f}.)
3.1.1 Usual Operators Now, such regular expressions yield finite state recognizability and can
an e e e T P s 3 3

the delay accounts for short? undetermined transmission delays.

2Significantly shorter than the periods of read and write clocks. If longer transmission
delays are needed, modeling should be more complex.

e Cooking Book

\' VERIMAG
\/ UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate
38610 GIERES

Tel. +33 4 76 63 48 48
Fax +33 4 76 63 48 50

The Quasi-Synchronous Approach to
Distributed Control Systems

Crisys draft

October 2000

Centre National de la Recherche Scientifique Universite Joseph Fourier Institut National Polytechnique de Grenoble

The Cooking Book

:RIMAG

XTE DE RECHERCHE

(©IEEE Computer Society Press, ACSD’06

Simulation and Verification of Asynchronous Systems
by means of a Synchronous Model*

Nicolas Halbwachs and Louis Mandel®
Vérimag! Grenoble — France

Abstract

Synchrony and asynchrony are commonly opposed
to each other. Now, in embedded applications, ac-
tual solutions are often situated in between, with syn-
chronous processes composed in a partially asynchronous
way. Examples of such intermediate solutions are GALS,
quasi-synchronous periodic processes, deadline-driven task
scheduling. . .In this paper, we illustrate the use of the syn-
chronous paradigm to model and validate such partially
asynchronous applications. We show that, through the use
of sporadic activation of processes and simulation of non-
determinism by the way of auxiliary inputs, the synchronous
paradigm allows a precise control of asynchrony. The ap-
proach is illustrated on a real case study, proposed in the
framework of the European Integrated project “Assert”.

1 Introduction

It is well admitted, now, that the synchronous
paradigm [4, 20] can significantly ease the modeling, pro-
gramming, and validation of embedded systems and soft-
ware. The synchronous parallel composition helps in struc-
turing the model, without introducing non-determinism.
The determinism of the model is also an invaluable advan-
tage for its validation: tests are reproducible, and model-
checking is not faced with the proliferation of states due to
non-deterministic interleaving of processes.

It is also recognized that the synchronous paradigm is
not the panacea, since it does not directly apply to intrinsi-
cally asynchronous situations, such as distributed systems,
or applications mixing long tasks and urgent sporadic re-
quests. This is why numerous works (see, e.g., [7] for a
synthesis) are devoted to combining synchrony with asyn-
chrony, or to extending the synchronous model towards less

*This work was partially supported by the European Commission under
the Integrated Project Assert, IST 004033

femail: {Nicolas.Halbwachs, Louis.Mandel}@imag.fr

#Verimag is a joint laboratory of Université Joseph Fourier, CNRS and
INPG associated with IMAG.

synchronous applications. For instance, “Communicating
reactive processes” [11] or “Multiclock Esterel” [10] are
extensions of the synchronous language Esterel [8] to cope
with non perfectly synchronous concurrency. On the other
hand, the paradigm of “Globally asynchronous, locally syn-
chronous systems” (GALS) has been proposed [16, 1, 9]
to describe general asynchronous systems, while keeping
as much as possible the advantages of synchronous com-
ponents. “Tag machines” [6, 5] are an even more general
and abstract attempt in the same direction. [17] mixes syn-
chronous (Signal) and asynchronous (Promela) models for
verifying GALS.

Another track of research addresses the compilation of
synchronous programs towards distributed or non strictly
synchronous code. While some distribution methods aim
at strictly preserving the synchronous semantics [13, 12],
other proposals only preserve the functional semantics [14,
15,27, 26].

Finally, other works concern the modeling of asyn-
chronous systems within the synchronous paradigm. It
is well-known since [24, 25] that a synchronous formal-
ism can be used to express asynchrony. The only need
is to express sporadic activation (or stuttering) of pro-
cesses — which is allowed in all existing synchronous lan-
guages — and explicit non-determinism. The modeling
tool Model-Build [2, 3] — developed within the European
projects SafeAir and SafeAir2 — and the Polychrony work-
bench [23, 19, 18] are based on this idea. In this paper, we
report on our use of this kind of approach in the framework
of the Assert project.

Assert is a European Integrated Project devoted to the
design of embedded systems from the system architecture
level down to the code, with special emphasis on high-
level modeling, proof-based design, and component reuse.
Aerospace industry (avionics, launchers, and satellites) con-
stitutes the main application domain of Assert. In this
framework, we propose a methodology based on a high-
level behavioral modeling and verification of an application,
using a synchronous formalism. Since the automatic gener-
ation of distributed code is not an objective of the project,
the automatic code generation is only applied separately to

Distributed Control Systems

Crisys draft

October 2000

> Quasi-Synchronous Approach to

Centre National de la Recherche Scientifique

Universite Joseph Fourier

Institut National Polytechnique de Grenoble

1P

(©IEEE Computer Society Press, ACSD’06

Simulation and Verification of Asynchronous Systems
by means of a Synchronous Model*

The Cooking Book

:RIMAG

XTE DE RECHERCHE

Nicolas Halbwachs and Louis Mandel®

Vérimag! Grenoble — France

Abstract

Synchrony and asynchrony are commonl)
to each other. Now, in embedded applica
tual solutions are often situated in between,
chronous processes composed in a partially asy
way. Examples of such intermediate solutions
quasi-synchronous periodic processes, deadline-
scheduling. . .In this paper, we illustrate the use
chronous paradigm to model and validate suc
asynchronous applications. We show that, throu
of sporadic activation of processes and simulati
determinism by the way of auxiliary inputs, the sy
paradigm allows a precise control of asynchron
proach is illustrated on a real case study, propc
framework of the European Integrated project “¢

1 Introduction

It is well admitted, now, that the sy
paradigm [4, 20] can significantly ease the mod
gramming, and validation of embedded system:
ware. The synchronous parallel composition helj
turing the model, without introducing non-de
The determinism of the model is also an invalua
tage for its validation: tests are reproducible, a
checking is not faced with the proliferation of st
non-deterministic interleaving of processes.

It is also recognized that the synchronous p
not the panacea, since it does not directly apply
cally asynchronous situations, such as distribute
or applications mixing long tasks and urgent sj
quests. This is why numerous works (see, e.g
synthesis) are devoted to combining synchrony
chrony, or to extending the synchronous model tc

*This work was partially supported by the European Comr
the Integrated Project Assert, IST 004033

femail: {Nicolas.Halbwachs, Louis.Mandel}

*Verimag is a joint laboratory of Université Joseph Fouric
INPG associated with IMAG.

Qo

L

Keywords:

Synchronous modeling and validation of schedulers dealing with

shared resources’

Erwan Jahier, Nicolas Halbwachs, Pascal Raymond

Jul 17 2008

Abstract

Architecture Description Languages (ADLs) allow embedded systems to be described as as-
semblies of hardware and software components. It is attractive to use such a global modelling
as a basis for early system analysis. However, in such descriptions, the applicative software is
often abstracted away, and is supposed to be developed in some host programming language.
This forbids to take the applicative software into account in such early validation. To over-
come this limitation, a solution consists in translating the ADL description into an executable
model, which can be simulated and validated together with the software. In a previous pa-
per [8], we proposed such a translation of AADL (Architecture Analysis & Design Language)
specifications into an executable synchronous model. The present paper is a continuation of
this work, and deals with expressing the behavior of complex scheduling policies managing
shared resources. We provide a synchronous specification for two shared resource schedul-
ing protocols: the well-known basic priority inheritance protocol (BIP), and the priority ceil-
ing protocol (PCP). This results in an automated translation of AADL models into a purely
Boolean synchronous (Lustre) scheduler, that can be directly model-checked, possibly with
the actual software.

, Synchronous I

Reviewers: Florence Maraninchi

Notes:

How to cite this report:

@techreport { ,

title = { Synchronous modeling and validation of schedulers dealing with shared resources® },

authors = { Erwan Jahier, Nicolas Halbwachs, Pascal Raymond},
institution = { Verimag Research Report },
number = {TR-2008-10},

year=1{
note = { }
}

Embedded systems, Simulation, Scheduling, Formal Verification, Architecture Description

ach to

1S

Institut National Polytechnique de Grenoble

The Cooking Book

bY
(©IEEE Computer Society Press, ACSD’06 ()/O\
Simulation and Verification of Asynchronous Systems ‘RIMAG VERIFICATION OF QUASI-SYNCHRONOUS SYSTEMS WITH UPPAAL
by means of a Synchronous Model* XTE DE RECHERCHE S. Bhattacharyya”, S. Miller', J. Yang"", S. Smolka'", B. Meng""", C.Sticksel"*", C. Tinelli'**
“Rockwell Collins, Advanced Technology Center, Cedar Rapids, 1A
** SUNY, Stony Brook, NY
** University of lowa, lowa City, 14

1P

Nicolas Halbwachs and Louis Mandel®
Vérimag! Grenoble — France

Abstract

Synchrony and asynchrony are commonl)
to each other. Now, in embedded applica
tual solutions are often situated in between,
chronous processes composed in a partially asy
way. Examples of such intermediate solutions
quasi-synchronous periodic processes, deadline-
scheduling. . .In this paper, we illustrate the use
chronous paradigm to model and validate suc
asynchronous applications. We show that, throu
of sporadic activation of processes and simulati
determinism by the way of auxiliary inputs, the sy
paradigm allows a precise control of asynchron
proach is illustrated on a real case study, propc
framework of the European Integrated project “¢

1 Introduction

It is well admitted, now, that the sy
paradigm [4, 20] can significantly ease the mod
gramming, and validation of embedded system:
ware. The synchronous parallel composition helj
turing the model, without introducing non-de
The determinism of the model is also an invalua
tage for its validation: tests are reproducible, a
checking is not faced with the proliferation of st
non-deterministic interleaving of processes.

It is also recognized that the synchronous p
not the panacea, since it does not directly apply
cally asynchronous situations, such as distribute
or applications mixing long tasks and urgent sj
quests. This is why numerous works (see, e.g
synthesis) are devoted to combining synchrony
chrony, or to extending the synchronous model tc

*This work was partially supported by the European Comr
the Integrated Project Assert, IST 004033

femail: {Nicolas.Halbwachs, Louis.Mandel}

*Verimag is a joint laboratory of Université Joseph Fouric
INPG associated with IMAG.

Keywords:

Synchronous modeling and validation of schedulers dealing with

shared resources’

Erwan Jahier, Nicolas Halbwachs, Pascal Raymond

Jul 17 2008

Abstract

Architecture Description Languages (ADLs) allow embedded systems to be described as as-
semblies of hardware and software components. It is attractive to use such a global modelling
as a basis for early system analysis. However, in such descriptions, the applicative software is
often abstracted away, and is supposed to be developed in some host programming language.
This forbids to take the applicative software into account in such early validation. To over-
come this limitation, a solution consists in translating the ADL description into an executable
model, which can be simulated and validated together with the software. In a previous pa-
per [8], we proposed such a translation of AADL (Architecture Analysis & Design Language)
specifications into an executable synchronous model. The present paper is a continuation of
this work, and deals with expressing the behavior of complex scheduling policies managing
shared resources. We provide a synchronous specification for two shared resource schedul-
ing protocols: the well-known basic priority inheritance protocol (BIP), and the priority ceil-
ing protocol (PCP). This results in an automated translation of AADL models into a purely
Boolean synchronous (Lustre) scheduler, that can be directly model-checked, possibly with
the actual software.

, Synchronous I

Reviewers: Florence Maraninchi

Notes:

How to cite this report:

@techreport { ,

title = { Synchronous modeling and validation of schedulers dealing with shared resources® }

authors = { Erwan Jahier, Nicolas Halbwachs, Pascal Raymond},
institution = { Verimag Research Report },

number = {TR-2008-10},

year={ },

note = { }

}

Embedded systems, Simulation, Scheduling, Formal Verification, Architecture Descript

Abstract

Modern defense systems are complex distributed
software systems implemented over heterogeneous
and constantly evolving hardware and software
platforms. Distributed agreement protocols are often
developed exploiting the fact that their systems are
quasi-synchronous, where even though the clocks of
the different nodes are not synchronized, they all run
at the same rate, or multiples of the same rate,
modulo their drift and jitter.

This paper describes an effort to provide systems
designers and engineers with an intuitive modeling
environment that allows them to specify the high-
level architecture and synchronization logic of quasi-
synchronous systems using widely available systems-
engineering notations and tools. To this end, a
translator was developed that translates system
architectural models specified in a subset of SysML
into the Architectural Analysis and Description
Language (AADL). Translators were also developed
that translate the AADL models into the input
language of the Uppaal and Kind model checkers.

The Uppaal model checker. supports the
modeling, verification, and validation of real-time
systems modeled as a network of timed automata.
This paper focuses on the challenges encountered in
translating from AADL to Uppaal, and illustrates the
overall approach with a common avionics example:
the Pilot Flying System.

Keywords: AADL, quasi-synchronous, model
checking, verification, Uppaal, Pilot Flying system.

Introduction

Modern defense systems are complex software
systems implemented over heterogeneous and
constantly evolving hardware and software platforms.
Due to the failure rates of individual hardware
components, critical functions must be implemented
as redundant, fault-tolerant systems in order to meet

978-1-4799-5001-0/14/$31.00 ©2014 IEEE

their reliability requirements. This is achieved by
distributing these functions over multiple processing
components connected by fault-tolerant networks.
‘When a system is replicated to achieve a high level of
reliability, the individual components still need to
agree on some part of the global system state, such as
which node is the current leader. While the amount of
state that needs to be consistent is often small, the
required consistency is essential for the correct
behavior of the system.

In developing distributed agreement protocols,
engineers often exploit the fact that their systems are
quasi-synchronous, where even though the clocks of
the different nodes are not synchronized, they all run
at the same rate, or multiples of the same rate,
modulo their drift and jitter. While such designs often
appear to work correctly at first, their intrinsic
asynchrony makes them prone to race and deadlock
conditions. These latent design errors often do not
appear until late in system integration or even after
the system is deployed.

This paper describes an effort to provide systems
designers and engineers with an intuitive modeling
environment that allows them to specify the high-
level architecture and synchronization logic of quasi-
synchronous systems using widely available system-
engineering notations and tools. A translator was
developed that translates system architectural models
specified in a subset of the SysML systems
engineering modeling language into the Architectural
Analysis and Description Language (AADL).
Translators were also developed that translate the
AADL models into the input language of the Uppaal
[1] and Kind [2] model checkers. Example quasi-
synchronous systems were created in SysML and
automatically translated into AADL, Kind, and
Uppaal. The Kind and Uppaal model checkers were
then used to verify these systems’ distributed
agreement protocols.

8A4-1

Institut National Polytechnique de Grenoble

The Cooking Book

VERIFICATION OF QUASI-SYNCHRONOUS SYSTEMS WITH UPPAAL

S. Bhattacharyya®, S. Miller®, J. Yang'™, S. Smolka™™, B. Meng**", C.Sticksel'*", C. Tinelli"™"*
“Rockwell Collins, Advanced Technology Center, Cedar Rapids, 1A
** SUNY, Stony Brook, NY
** University of lowa, lowa City, 14

(©IEEE Computer Society Press, ACSD’06

Simulation and Verification of Asynchronous Systems
by means of a Synchronous Model*

:RIMAG

XTE DE RECHERCHE

Nicolas Halbwachs and Louis Mandel®
Vérimag! Grenoble — France

Abstract

Synchrony and asynchrony are commonl)
to each other. Now, in embedded applica
tual solutions are often situated in between,
chronous processes composed in a partially asy
way. Examples of such intermediate solutions
quasi-synchronous periodic processes, deadline-
scheduling. . .In this paper, we illustrate the use
chronous paradigm to model and validate suc
asynchronous applications. We show that, throu
of sporadic activation of processes and simulati
determinism by the way of auxiliary inputs, the sy
paradigm allows a precise control of asynchron
proach is illustrated on a real case study, propc
framework of the European Integrated project “¢

1 Introduction

It is well admitted, now, that the sy
paradigm [4, 20] can significantly ease the mod
gramming, and validation of embedded system:
ware. The synchronous parallel composition helj
turing the model, without introducing non-de
The determinism of the model is also an invalua
tage for its validation: tests are reproducible, a
checking is not faced with the proliferation of st
non-deterministic interleaving of processes.

It is also recognized that the synchronous p
not the panacea, since it does not directly apply
cally asynchronous situations, such as distribute
or applications mixing long tasks and urgent sj
quests. This is why numerous works (see, e.g
synthesis) are devoted to combining synchrony
chrony, or to extending the synchronous model tc

*This work was partially supported by the European Comr
the Integrated Project Assert, IST 004033

femail: {Nicolas.Halbwachs, Louis.Mandel}

*Verimag is a joint laboratory of Université Joseph Fouric
INPG associated with IMAG.

Keywords:

Synchronous modeling and validation of schedulers dealing with

shared resources’

Erwan Jahier, Nicolas Halbwachs, Pascal Raymond

Jul 17 2008

Abstract

Architecture Description Languages (ADLs) allow embedded systems to be described as as-
semblies of hardware and software components. It is attractive to use such a global modelling
as a basis for early system analysis. However, in such descriptions, the applicative software is
often abstracted away, and is supposed to be developed in some host programming language.
This forbids to take the applicative software into account in such early validation. To over-
come this limitation, a solution consists in translating the ADL description into an executable
model, which can be simulated and validated together with the software. In a previous pa-
per [8], we proposed such a translation of AADL (Architecture Analysis & Design Language)
specifications into an executable synchronous model. The present paper is a continuation of
this work, and deals with expressing the behavior of complex scheduling policies managing
shared resources. We provide a synchronous specification for two shared resource schedul-
ing protocols: the well-known basic priority inheritance protocol (BIP), and the priority ceil-
ing protocol (PCP). This results in an automated translation of AADL models into a purely
Boolean synchronous (Lustre) scheduler, that can be directly model-checked, possibly with
the actual software.

, Synchronous I

Reviewers: Florence Maraninchi

Notes:

How to cite this report:

@techreport { ,

title = { Synchronous modeling and validation of schedulers dealing with shared resources® }

authors = { Erwan Jahier, Nicolas Halbwachs, Pascal Raymond},
institution = { Verimag Research Report },

number = {TR-2008-10},

year={ },

note = { }

}

Embedded systems, Simulation, Scheduling, Formal Verification, Architecture Descript

Abstract

Modern defense systems are comy
software systems implemented over
and constantly evolving hardware
platforms. Distributed agreement prot
developed exploiting the fact that the
quasi-synchronous, where even thoug
the different nodes are not synchroniz
at the same rate, or multiples of
modulo their drift and jitter.

This paper describes an effort to |
designers and engineers with an intu
environment that allows them to spc
level architecture and synchronization
synchronous systems using widely ave
engineering notations and tools. T
translator was developed that trai
architectural models specified in a su
into the Architectural Analysis ar
Language (AADL). Translators were
that translate the AADL models
language of the Uppaal and Kind modt

The Uppaal model checker.
modeling, verification, and validatio
systems modeled as a network of ti
This paper focuses on the challenges
translating from AADL to Uppaal, an
overall approach with a common avi
the Pilot Flying System.

Keywords: AADL, quasi-synchrc
checking, verification, Uppaal, Pilot Fl

Introduction

Modern defense systems are coi
systems implemented over heter
constantly evolving hardware and soft
Due to the failure rates of indivi
components, critical functions must b
as redundant, fault-tolerant systems ir

978-1-4799-5001-0/14/$31.00 ©2014

Institut National Pol

Vv

®

AFRL-RI-RS-TR-2015-171

FORMAL VERIFICATION OF QUASI-SYNCHRONOUS SYSTEMS

ROCKWELL COLLINS
JULY 2015
FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

B AIR FORCE MATERIEL COMMAND B UNITED STATES AIR FORCE H ROME, NY 13441

A

Op

The Cooking Book .

©
| %&@/\
0 \¢

5/0 6’
(o) 7) %)
O e 0:\9

(.L .
.
.
(©IEEE Computer Society Press, ACSD’06

Simulation and Verification of Asynchronous Systems
by means of a Synchronous Model*

VERIFICATION OF QUASI-SYNCHRONOUS SYSTEMS WITH UPPAAL
S. Bhattacharyya®, S. Miller®, J. Yang'™, S. Smolka™™, B. Meng**", C.Sticksel'*", C. Tinelli"™"*
“Rockwell Collins, Advanced Technology Center, Cedar Rapids, 1A
** SUNY, Stony Brook, NY
** University of lowa, lowa City, 14

:RIMAG

XTE DE RECHERCHE

Nicolas Halbwachs and Louis Mandel®
Vérimag! Grenoble — France

Abstract

Synchrony and asynchrony are commonl)
to each other. Now, in embedded applica
tual solutions are often situated in between,
chronous processes composed in a partially asy
way. Examples of such intermediate solutions
quasi-synchronous periodic processes, deadline-
scheduling. . .In this paper, we illustrate the use
chronous paradigm to model and validate suc
asynchronous applications. We show that, throu
of sporadic activation of processes and simulati
determinism by the way of auxiliary inputs, the sy
paradigm allows a precise control of asynchron
proach is illustrated on a real case study, propc
framework of the European Integrated project “¢

1 Introduction

It is well admitted, now, that the sy
paradigm [4, 20] can significantly ease the mod
gramming, and validation of embedded system:
ware. The synchronous parallel composition helj
turing the model, without introducing non-de
The determinism of the model is also an invalua
tage for its validation: tests are reproducible, a
checking is not faced with the proliferation of st
non-deterministic interleaving of processes.

It is also recognized that the synchronous p
not the panacea, since it does not directly apply
cally asynchronous situations, such as distribute
or applications mixing long tasks and urgent sj
quests. This is why numerous works (see, e.g
synthesis) are devoted to combining synchrony
chrony, or to extending the synchronous model tc

*This work was partially supported by the European Comr
the Integrated Project Assert, IST 004033

femail: {Nicolas.Halbwachs, Louis.Mandel}

*Verimag is a joint laboratory of Université Joseph Fouric
INPG associated with IMAG.

Keywords:

Synchronous modeling and validation of schedulers dealing with

shared resources’

Erwan Jahier, Nicolas Halbwachs, Pascal Raymond

Jul 17 2008

Abstract

Architecture Description Languages (ADLs) allow embedded systems to be described as as-
semblies of hardware and software components. It is attractive to use such a global modelling
as a basis for early system analysis. However, in such descriptions, the applicative software is
often abstracted away, and is supposed to be developed in some host programming language.
This forbids to take the applicative software into account in such early validation. To over-
come this limitation, a solution consists in translating the ADL description into an executable
model, which can be simulated and validated together with the software. In a previous pa-
per [8], we proposed such a translation of AADL (Architecture Analysis & Design Language)
specifications into an executable synchronous model. The present paper is a continuation of
this work, and deals with expressing the behavior of complex scheduling policies managing
shared resources. We provide a synchronous specification for two shared resource schedul-
ing protocols: the well-known basic priority inheritance protocol (BIP), and the priority ceil-
ing protocol (PCP). This results in an automated translation of AADL models into a purely
Boolean synchronous (Lustre) scheduler, that can be directly model-checked, possibly with
the actual software.

, Synchronous I

Reviewers: Florence Maraninchi

Notes:

How to cite this report:

@techreport { ,

title = { Synchronous modeling and validation of schedulers dealing with shared resources® }

authors = { Erwan Jahier, Nicolas Halbwachs, Pascal Raymond},
institution = { Verimag Research Report },

number = {TR-2008-10},

year={ },

note = { }

}

Embedded systems, Simulation, Scheduling, Formal Verification, Architecture Descript

Abstract

Modern defense systems are comy
software systems implemented over
and constantly evolving hardware
platforms. Distributed agreement prot
developed exploiting the fact that the
quasi-synchronous, where even thoug
the different nodes are not synchroniz
at the same rate, or multiples of
modulo their drift and jitter.

This paper describes an effort to |
designers and engineers with an intu
environment that allows them to spc
level architecture and synchronization
synchronous systems using widely ave
engineering notations and tools. T
translator was developed that trai
architectural models specified in a su
into the Architectural Analysis ar
Language (AADL). Translators were
that translate the AADL models
language of the Uppaal and Kind modt

The Uppaal model checker.
modeling, verification, and validatio
systems modeled as a network of ti
This paper focuses on the challenges
translating from AADL to Uppaal, an
overall approach with a common avi
the Pilot Flying System.

Keywords: AADL, quasi-synchrc
checking, verification, Uppaal, Pilot Fl

Introduction

Modern defense systems are coi
systems implemented over heter
constantly evolving hardware and soft
Due to the failure rates of indivi
components, critical functions must b
as redundant, fault-tolerant systems ir

978-1-4799-5001-0/14/$31.00 ©2014

Institut National Pol

AFRL-RI-RS-TR-2015-171

FORMAL VERIFICATION OF QUASI-SYNCHRONOUS SYSTEMS

ROCKWELL COLLINS
JULY 2015
FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED H

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

B AIR FORCE MATERIEL COMMAND B UNITED STATES AIR FORCE H ROME, NY 13441

The Big Picture

0 < Tmin S TA; TB S Tmax
0 < Tmin S TA,TB S Tmax
TA TB

TA

>

A B

<

, XN/

Real-time Model (RT)

The Big Picture

0 < Tmin S TA,TB S Tmax S h d l
0 < Tmin S TA,TB S Tmax . cheauter
A
TA TB
TA
> >
A B A B
TB
< <

XN

Real-time Model (RT) Discrete-time Model (DT)

The Big Picture

0 < Tmin S TAaTB S TmaX

0< Twin < T4.78 < Tax Scheduler

T A T'p :

A -] B A] B
A I I I A o o ®
<N // NEARRNAAN

Real-time Model (RT) Discrete-time Model (DT)

DIl = o

The Big Picture

0 < Tmin S TAaTB S TmaX

0< Twin < T4.78 < Tax Scheduler

T A T'p :

A -] B A] B
A I I I A o o ®
<N // NEARRNAAN

Real-time Model (RT) Discrete-time Model (DT)

RT =¢ ¢ DT = ¢

The Big Picture

0 < Tmin S TAaTB S TmaX

0< Twin < T4.78 < Tax Scheduler

T A T'p :

A -] B A] B
A — - ! Ao o o
XN e

Real-time Model (RT) Discrete-time Model (DT)
RT =¢ ¢ DT = ¢

Qoundnege

Quasi-Periodic Architectures

Property 1. First, we assume that every process P is periodic with a period
varying between small margins:

ITpym <T1Tp <Tpy

Definition (Quasi-Periodic Architecture):

* A set of "quasi-periodic” processes with local clocks and
nominal period 7" (jitter ¢)

0 < Tmin S Tn S Tmax or
Tn—ESIii—Iii_lng—FE

(ki)sen ClOCK activations

* Buffered communication without message inversion or 0SS
* Bounded communication delay

Tmin S T S Tmax

Quasi-Periodic Architectures

Property 1. First, we assume that every process P is periodic with a period
varying between small margins:

ITpym <T1Tp <Tpy

Definition (Trace): A (quasi-periodic) trace £ is a set of activation
events {4; | A e N Nie N} and two functions

- t(4;) the date of event
- 7(A4, B) the transmission delay of message sent at 4,to B

For a quasi-periodic trace we have

0< Thpirn < t(AfH_l) — t(Az) < Tnaz;
0 < Thyn < T(Aiy B) < Trmaz-

Quasi-Periodic Architectures

Property 1. First, we assume that every process P is periodic with a period
varying between small margins:

ITpym <T1Tp <Tpy

Definition (Happened Before): For a trace &, let — be the smallest
relation on activation events that satisfies

(local) If ¢ <0, A; — A1

(recv) If t(A;) +7(As, B) < t(Bj) then A; — B;

Node are only triggered by their local clock
Meggage receptiong are not explicitly modelled.

[Lamport 1978]

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

Periodic gampling?

® ® o—

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

Periodic gampling?

® ® o—

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

Periodic gampling?

Pl

® ® o—

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

Event-driven sampling?

® ® o—

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

Event-driven sampling?

® ® o—

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

Event-driven sampling? Something ie migging. ..

® ® o—

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

Event-driven sampling? Something ie migging. ..
@ ® o—
@ @ @ >

What about execution and trangmiggion time?

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

Event-driven sampling? Something ie migging. ..
(Texec . . >

NTtrans @ O >
\ J

What about execution and trangmiggion time?

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

Event-driven sampling? Something ie migging. ..

4 o ~—

\ -0 ® .

K T = Texec T Ttrans J

What about execution and trangmiggion time?

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between

two successive “t” values of the other one.

Event-driven sampling?

Something ie migging. ..

f\ [

K T = Texec T Ttrans J K

Texec

: Ttrans \Ttrans

~

J

What about execution and trangmiggion time?

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between

two successive “t” values of the other one.

Event-driven sampling?

Something ie migging. ..

f\ [

K T = Texec T Ttrans J K

Texec

: Ttrans \T‘Grans

Texec < Tmin

~

J

What about execution and trangmiggion time?

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

Event-driven sampling? Something ie migging. ..

(oo unit-delay N

\ HPS : Ttrans \Xﬁrang

K T = Texec T Ttrans J K Texee < Tmin J

What about execution and trangmiggion time?

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

Event-driven sampling?

YA /A

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Event-driven sampling?

YA /A

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Event-driven sampling?

YA /A

Halt the events: much lese posgible interleavingg

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Event-driven sampling?

N

4)

- _/

Halt the events: much lese posgible interleavingg

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Event-driven sampling?

N

Halt the events: much lese posgible interleavingg

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Event-driven sampling?

N

’\/7\ ®
_ Y,

Halt the events: much lese posgible interleavingg

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Event-driven sampling?

< AL

’\/7\ ®
_ Y,

Halt the events: much lese posgible interleavingg

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Definition (Unitary Discretization): A function f : £ — N that
assigns each event in a (real-time) trace to a logical instant of a
corresponding discrete trace, is a unitary discretization if:

\V/Ai,Bj c€&, A, — Bj < f(Az) < f(BJ) and A = B
A = B Node A communicate with node B

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Definition (Unitary Discretization): A function f : £ — N that
assigns each event in a (real-time) trace to a logical instant of a
corresponding discrete trace, is a unitary discretization if:

\V/Ai,Bj c€&, A, — Bj < f(Az) < f(BJ) and A = B
A = B Node A communicate with node B

Map real-time and gynchronous caugality

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Definition (Unitary Discretization): A function f : £ — N that
assigns each event in a (real-time) trace to a logical instant of a
corresponding discrete trace, is a unitary discretization if:

\V/Ai,Bj c&, A — Bj < f(Az) < f(BJ) and A = B
A = B Node A communicate with node B

Map [real=time and gynchronous caugality

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Definition (Unitary Discretization): A function f : £ — N that
assigns each event in a (real-time) trace to a logical instant of a
corresponding discrete trace, is a unitary discretization if:

\V/Ai,Bj c&, A — Bj < f(Az) < f(B]) and A = B
A = B Node A communicate with node B

Map [real=time and Qynehronous caugality

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Definition (Unitary Discretization): A function f : £ — N that
assigns each event in a (real-time) trace to a logical instant of a
corresponding discrete trace, is a unitary discretization if:

\V/Ai,Bj c&, A — Bj < f(Az) < f(B]) and A= B
A = B Node A communicate with node B

Map [real=time and Qynehronous caugality

Problem: Are quagi-periodic architectures unitary discretizable?

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?

N

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?

N

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?

NC

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?
/

/. 7/ B\

/

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?

N

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?

N

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?

g 7//)

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?
/ .
g I 7/
; .
s D
./\\I
@
¥ y

We looge the link between digcrete- and real-time

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?
/

/. 7/ B\

/

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?
/ ,\ R

N

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?

N

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?
N
/ - ™
o«
o0

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?
\ ,\ R

N XK

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?
N
; .
~ ™

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?
N
; .
~ ™

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?
\ .
< ol
; .
~ ™

Unitary Discretization

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

the delay accounts for short? undetermined transmission delays.

Twigting the tick?
\ .
< N o
; .
SN N
e
- y

Some traces cannot be unitary digcretized

Unitary Discretization

Theorem (2-nodes systems): A quasi-periodic
architectures with two nodes is unitary discretizable

if and only if
Tmin > 27—max-

Tmax Tmax WOrgf‘Oage QCQHQ riO

Unitary Discretization

Theorem (2-nodes systems): A quasi-periodic
architectures with two nodes is unitary discretizable
if and only if

Tmin Z 27—max-
Tinax & Worgt-cage gcenario
Tmin ‘
~ R s R
o

Unitary Discretization

Theorem (2-nodes systems): A quasi-periodic
architectures with two nodes is unitary discretizable
if and only if

Tmin > 27—max-

Woret-cage ecenario

@
ﬂnin

the delay accounts for short? undetermined transmission delays.

2Significantly shorter than the periods of read and write clocks. If longer transmission
delays are needed, modeling should be more complex.

Unitary Discretization

Theorem (2-nodes systems): A quasi-periodic
architectures with two nodes is unitary discretizable
if and only if

Tmin > 27—max-

Woret-cage ecenario

the delay accounts for short? undetermined transmission delays.

2Significantly shorter than the periods of read and write clocks. If longer transmission
delays are needed, modeling should be more complex.

Unitary Discretization

Theorem (general systems): A quasi-periodic
architectures with more than two nodes is, in general,
not unitary discretizable.

Tmax>/ Always possible

Unitary Discretization

Theorem (general systems): A quasi-periodic
architectures with more than two nodes is, in general,
not unitary discretizable.

Tmax>/ Always possible

Unitary Discretization

Theorem (general systems): A quasi-periodic
architectures with more than two nodes is, in general,
not unitary discretizable.

Tmax>/ Always possible

Unitary Discretization

Theorem (general systems): A quasi-periodic
architectures with more than two nodes is, in general,
not unitary discretizable.

Tmax>/ Always possible

Unitary Discretization

Theorem (general systems): A quasi-periodic
architectures with more than two nodes is, in general,
not unitary discretizable.

Tmax>/ Always possible

Unitary Discretization

Theorem (general systems): A quasi-periodic
architectures with more than two nodes is, in general,
not unitary discretizable.

Unitary Discretization

Theorem (general systems): A quasi-periodic
architectures with more than two nodes is, in general,
not unitary discretizable.

Unitary Discretization

Theorem (general systems): A quasi-periodic
architectures with more than two nodes is, in general,
not unitary discretizable.

Unitary Discretization

Theorem (general systems): A quasi-periodic
architectures with more than two nodes is, in general,
not unitary discretizable.

Unitary Discretization

Theorem (general systems): A quasi-periodic
architectures with more than two nodes is, in general,
not unitary discretizable.

Tma)>/ A[wagg poggib(e

Constraining Communications

Proposition: If f is a unitary discretization for a
trace, for a pair of nodes where A = B we have that

A= By = [(A)) < [(By)
A A By = f(A) > [(B)).

We gather all these congtraints in a weighted graph

Vertices: Activations of the nodes
Edges:

e If A; — B, then A, %B

o |f AziBand A, # B thenB %A

Constraining Communications

Proposition: If f is a unitary discretization for a
trace, for a pair of nodes where A = B we have that

A; = By = f(A) < f(By),

We gather all these congtraints in a weighted graph

Vertices: Activations of the nodes
Edges:

e If A; — B, then A, %B

o |f AziBand A, # B thenB %A

Constraining Communications

A; = By = f(A;) < f(By),

Lemma: For a trace, there exists a unitary discretization
if and only if the corresponding graph has no cycle of
positive weight

Proof:
* |f there is a cycle of positive weight, there is an
event A; such that f(A4;) < f(A;)

« Otherwise, the function that maps each event A; to the
longest path that lead to A; is a unitary discretization

Constraining Communications

A; = By = f(Ay) < f(By),
B; 5 A; = f(B;) < f(A;).

Lemma: For a trace, there exists a unitary discretization
if and only if the corresponding graph has no cycle of
positive weight

Proof:
* |f there is a cycle of positive weight, there is an
event A; such that f(A4;) < f(A;)

« Otherwise, the function that maps each event A; to the
longest path that lead to A; is a unitary discretization

Leave room for all the predecesgorg...

Constraining Communications

Proposition: A cycle of positive weight can be reduced
to a cycle of positive weight based on a u-cycle of the
communication graph.

u-cycle: cycle of the undirected communication graph

A . B A ¢ B A . B
D C C D C

Cycle Unbalanced Balanced

Constraining Communications

L. size of the longest elementary communication cycle

Theorem: A quasi-periodic architecture is unitary discretizable
if and only if

1. all u-cycle of the communication graph are either cycles or
balanced u-cycle, and,

2. there is no balanced u-cycle in the communication graph
Of Tmin = Tmazx, @nd,

3. there is no cycle in the communication graph, or

Tmin > Lcha,az

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg

B

Z

C

N\

E—D

m © O @ >

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg

2N\

C

N\

E—D

m © O @ >

n 1

i

- £

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0
B
R A
A C

N
E——D C
D
E

n 1

i

- £

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0
B
2N\ A
A C
N
E——D C
D
E

n 1

i

- £

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0
B
7\ A .
A C ‘\f
\<\ // B ®
E——D ¢
D
E

n 1

i

- £

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

7\

C

N

E—D

n 1

i

- £

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg ¢ >p = €= (¢Tmax — PTmin)/q > 0
B
% \\4‘ A | .
A C QA&
\\ / /‘ B '\m
F—=D ¢ °

D
E

n 1

i

- £

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p = €= (¢Tmax — PTmin)/q > 0
B

&N <

N/ Y

E—D

m © O @ >

n 1

i

- £

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg

7N\

C

N\

E—D

n 1

i

- £

q>p=— €= (¢Tmax — PTmin)/q > 0

m © O @ >

~C
N

./M:X

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg ¢ >p = €= (¢Tmax — PTmin)/q > 0
B
A\\% \\/7 e
2
_ C
E—/D - '%:X
E

n 1

i

- £

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg

7N\

C

N\

E—=D

n 1

i

- £

q>p=— €= (¢Tmax — PTmin)/q > 0

m © O @ >

N

Ny
W

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=—=¢=(qTmax — PTmin)/q > 0
B
V2N A
A C A —\\\
N ’ 'Qx
FE=2D —
D 0
E -

n 1

i

- £

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0
B
2R A |
A C
N
s C
D
E

n 1

i

- £

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg

Pa

C

N

E—=D

n 1

i

- £

q>p=— €= (¢Tmax — PTmin)/q > 0

N\
A?’is g

m © O @ >

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

7N\

C

N\

E—=D

n 1

3

il

We built a cycle of positive weight!

- £

Constraining Communications

Proof: On the other hand, by contraposition,

Constraining Communications

Proof: On the other hand, by contraposition,

PW/u-cycle

Constraining Communications

Proof: On the other hand, by contraposition,

cycle

/

PW/u-cycle

Constraining Communications

Proof: On the other hand, by contraposition,

cycle balanced

\\ balanced
cycle

PW/u-cycle

Constraining Communications

Proof: On the other hand, by contraposition,

ot

\ balanced
cycle

/Cyce \ balanced@\-

PW/u-cycle

Constraining Communications

Proof: On the other hand, by contraposition,

ot

/Cyce \ balanced@\-

PW/u-cycle balanced ——> Tmin < Tmax

cycle

Constraining Communications

Proof: On the other hand, by contraposition,

cvcle \S
y balanced 6{‘\0{\
/ \ Q™
PW/u-cycle balanced == Tmin < Tmax .Dx\q/'
.\\
QP‘@

cycle

Constraining Communications

Proof: On the other hand, by contraposition,

cycle \
y balancead 4\0{\
/ \ Q>
PW/u-cycle balanced =—> Tmin < Tmax N
S

Constraining Communications

Proof: On the other hand, by contraposition,

cycle balanced 7\
Q>
PW/u-cycle balanced =—> Tmin < Tmax N
S
Q>
|
CyCle —— Thin = LeTmas {\\0\\

The Quasi-Synchronous Abstraction

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

The Quasi-Synchronous Abstraction

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

But there ie no direct link between digerete- and real-time

For
|t
).

The Quasi-Synchronous Abstraction

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

But there ie no direct link between digerete- and real-time

any node:
nere 18 o more t

nere 18 no more t

nan n activations between two megeage receptiong

nan n mesgage receptions between two activationg

VAR AR VAT

Condition |. Condition 2.

The Quasi-Synchronous Abstraction

Any of the two clocks cannot take the value “t "more than twice between
two successive “t” values of the other one.

But there ie no direct link between digerete- and real-time

Definition (n-Quasi-Synchrony): A quasi-periodic architecture is
n-quasi-synchronous if for every trace t

1.there exists a unitary discretization f, and

2.for any node A &= B, there is no chain of activation of length
greater than n, that is no 1 and | such that

f(BJ) < f(Az) + < f(z—|—n) ~ f(Bj—H)
f(AJ) < f(Bz) - < f(z—l—n) f(Aj—l—l)

The Quasi-Synchronous Abstraction

This can be formalized by saying that the boolean vector stream com-
posed of the two clocks should never contain the subsequence:

REEVRR R

The boolean vector associated to nodes A and B never contains
either of the subsequences
- - 9\ N
s
f_ t

G B
7 T/

Condition . Condition 2.

The Quasi-Synchronous Abstraction

Theorem: A quasi-periodic architecture is n-quasi-synchronous
if and only if

1. the conditions for unitary discretizability hold, and,
2. nTmm + Tmin 2 Tma,x + Tmaz-

(n+) timeg

Tmin
. ‘ n n n ‘ ‘
/7- .
mm’/ .Ax

Tmax

Woret-cage geenario

Conclusion

The quasi-eynchronoug abgtraction ig a nice idea to reduce posgible
interleavinge when uging verification tools for digcrete modelg.

Conclusion

The quasi-eynchronoug abgtraction ig a nice idea to reduce posgible
interleavingg when uging verification toole for digerete models.

Do careful with general Qystems.

' odes.
od communications with more than 1o 0

1+ doeg not work for bug-bag

Conclusion

The quasi-eynchronoug abgtraction ig a nice idea to reduce posgible
interleavingg when uging verification toole for digerete models.

Do careful with general Qystems.

It worke £y two nodeg

Conclusion

The quasi-eynchronoug abgtraction ig a nice idea to reduce posgible
interleavingg when uging verification toole for digerete models.

Do careful with general Qystems.

' ' two nodes.
« bue-baged communications with more than

1+ doeg not work {0

Conclusion

The quasi-eynchronoug abgtraction ig a nice idea to reduce posgible
interleavingg when uging verification toole for digerete models.

Do careful with general Qystems.

' ' two nodes.
« bue-baged communications with more than

1+ doeg not work {0

The descriptions proposed in the previous chapter are non deterministic.
Using them for formal verification and even for simulation and test gen-
eration will frequently lead to problems of state explosion.

