
Soundness of the
Quasi-Synchronous Abstraction
Guillaume Baudart Timothy Bourke Marc Pouzet

École normale supérieure, INRIA Paris

VERIMAG
UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate

38610 GIERES

Tel. +33 4 76 63 48 48

Fax +33 4 76 63 48 50

Universite Joseph FourierCentre National de la Recherche Scientifique Institut National Polytechnique de Grenoble

The Cooking Book

The Cooking Book

The Cooking Book

The Cooking Book

Quasi-Periodic Architecture

The Cooking Book

The Cooking Book

The Cooking Book

The Cooking Book

Quasi-Synchrony

The Cooking Book

Quasi-Synchrony

VERIMAG
UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate

38610 GIERES

Tel. +33 4 76 63 48 48

Fax +33 4 76 63 48 50

Universite Joseph FourierCentre National de la Recherche Scientifique Institut National Polytechnique de Grenoble

The Cooking Book

VERIMAG
UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate

38610 GIERES

Tel. +33 4 76 63 48 48

Fax +33 4 76 63 48 50

Universite Joseph FourierCentre National de la Recherche Scientifique Institut National Polytechnique de Grenoble

Simulation and Verification of Asynchronous Systems

by means of a Synchronous Model∗

Nicolas Halbwachs and Louis Mandel†

Vérimag‡, Grenoble – France

c©IEEE Computer Society Press, ACSD’06

Abstract

Synchrony and asynchrony are commonly opposed

to each other. Now, in embedded applications, ac-

tual solutions are often situated in between, with syn-

chronous processes composed in a partially asynchronous

way. Examples of such intermediate solutions are GALS,

quasi-synchronous periodic processes, deadline-driven task

scheduling. . . In this paper, we illustrate the use of the syn-

chronous paradigm to model and validate such partially

asynchronous applications. We show that, through the use

of sporadic activation of processes and simulation of non-

determinism by the way of auxiliary inputs, the synchronous

paradigm allows a precise control of asynchrony. The ap-

proach is illustrated on a real case study, proposed in the

framework of the European Integrated project “Assert”.

1 Introduction

It is well admitted, now, that the synchronous

paradigm [4, 20] can significantly ease the modeling, pro-

gramming, and validation of embedded systems and soft-

ware. The synchronous parallel composition helps in struc-

turing the model, without introducing non-determinism.

The determinism of the model is also an invaluable advan-

tage for its validation: tests are reproducible, and model-

checking is not faced with the proliferation of states due to

non-deterministic interleaving of processes.

It is also recognized that the synchronous paradigm is

not the panacea, since it does not directly apply to intrinsi-

cally asynchronous situations, such as distributed systems,

or applications mixing long tasks and urgent sporadic re-

quests. This is why numerous works (see, e.g., [7] for a

synthesis) are devoted to combining synchrony with asyn-

chrony, or to extending the synchronous model towards less

∗This work was partially supported by the European Commission under

the Integrated Project Assert, IST 004033
†email: {Nicolas.Halbwachs, Louis.Mandel}@imag.fr
‡Verimag is a joint laboratory of Université Joseph Fourier, CNRS and

INPG associated with IMAG.

synchronous applications. For instance, “Communicating

reactive processes” [11] or “Multiclock Esterel” [10] are

extensions of the synchronous language Esterel [8] to cope

with non perfectly synchronous concurrency. On the other

hand, the paradigm of “Globally asynchronous, locally syn-

chronous systems” (GALS) has been proposed [16, 1, 9]

to describe general asynchronous systems, while keeping

as much as possible the advantages of synchronous com-

ponents. “Tag machines” [6, 5] are an even more general

and abstract attempt in the same direction. [17] mixes syn-

chronous (Signal) and asynchronous (Promela) models for

verifying GALS.

Another track of research addresses the compilation of

synchronous programs towards distributed or non strictly

synchronous code. While some distribution methods aim

at strictly preserving the synchronous semantics [13, 12],

other proposals only preserve the functional semantics [14,

15, 27, 26].

Finally, other works concern the modeling of asyn-

chronous systems within the synchronous paradigm. It

is well-known since [24, 25] that a synchronous formal-

ism can be used to express asynchrony. The only need

is to express sporadic activation (or stuttering) of pro-

cesses — which is allowed in all existing synchronous lan-

guages — and explicit non-determinism. The modeling

tool Model-Build [2, 3] — developed within the European

projects SafeAir and SafeAir2 — and the Polychrony work-

bench [23, 19, 18] are based on this idea. In this paper, we

report on our use of this kind of approach in the framework

of the Assert project.

Assert is a European Integrated Project devoted to the

design of embedded systems from the system architecture

level down to the code, with special emphasis on high-

level modeling, proof-based design, and component reuse.

Aerospace industry (avionics, launchers, and satellites) con-

stitutes the main application domain of Assert. In this

framework, we propose a methodology based on a high-

level behavioral modeling and verification of an application,

using a synchronous formalism. Since the automatic gener-

ation of distributed code is not an objective of the project,

the automatic code generation is only applied separately to

2006

The Cooking Book

VERIMAG
UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate

38610 GIERES

Tel. +33 4 76 63 48 48

Fax +33 4 76 63 48 50

Universite Joseph FourierCentre National de la Recherche Scientifique Institut National Polytechnique de Grenoble

Simulation and Verification of Asynchronous Systems

by means of a Synchronous Model∗

Nicolas Halbwachs and Louis Mandel†

Vérimag‡, Grenoble – France

c©IEEE Computer Society Press, ACSD’06

Abstract

Synchrony and asynchrony are commonly opposed

to each other. Now, in embedded applications, ac-

tual solutions are often situated in between, with syn-

chronous processes composed in a partially asynchronous

way. Examples of such intermediate solutions are GALS,

quasi-synchronous periodic processes, deadline-driven task

scheduling. . . In this paper, we illustrate the use of the syn-

chronous paradigm to model and validate such partially

asynchronous applications. We show that, through the use

of sporadic activation of processes and simulation of non-

determinism by the way of auxiliary inputs, the synchronous

paradigm allows a precise control of asynchrony. The ap-

proach is illustrated on a real case study, proposed in the

framework of the European Integrated project “Assert”.

1 Introduction

It is well admitted, now, that the synchronous

paradigm [4, 20] can significantly ease the modeling, pro-

gramming, and validation of embedded systems and soft-

ware. The synchronous parallel composition helps in struc-

turing the model, without introducing non-determinism.

The determinism of the model is also an invaluable advan-

tage for its validation: tests are reproducible, and model-

checking is not faced with the proliferation of states due to

non-deterministic interleaving of processes.

It is also recognized that the synchronous paradigm is

not the panacea, since it does not directly apply to intrinsi-

cally asynchronous situations, such as distributed systems,

or applications mixing long tasks and urgent sporadic re-

quests. This is why numerous works (see, e.g., [7] for a

synthesis) are devoted to combining synchrony with asyn-

chrony, or to extending the synchronous model towards less

∗This work was partially supported by the European Commission under

the Integrated Project Assert, IST 004033
†email: {Nicolas.Halbwachs, Louis.Mandel}@imag.fr
‡Verimag is a joint laboratory of Université Joseph Fourier, CNRS and

INPG associated with IMAG.

synchronous applications. For instance, “Communicating

reactive processes” [11] or “Multiclock Esterel” [10] are

extensions of the synchronous language Esterel [8] to cope

with non perfectly synchronous concurrency. On the other

hand, the paradigm of “Globally asynchronous, locally syn-

chronous systems” (GALS) has been proposed [16, 1, 9]

to describe general asynchronous systems, while keeping

as much as possible the advantages of synchronous com-

ponents. “Tag machines” [6, 5] are an even more general

and abstract attempt in the same direction. [17] mixes syn-

chronous (Signal) and asynchronous (Promela) models for

verifying GALS.

Another track of research addresses the compilation of

synchronous programs towards distributed or non strictly

synchronous code. While some distribution methods aim

at strictly preserving the synchronous semantics [13, 12],

other proposals only preserve the functional semantics [14,

15, 27, 26].

Finally, other works concern the modeling of asyn-

chronous systems within the synchronous paradigm. It

is well-known since [24, 25] that a synchronous formal-

ism can be used to express asynchrony. The only need

is to express sporadic activation (or stuttering) of pro-

cesses — which is allowed in all existing synchronous lan-

guages — and explicit non-determinism. The modeling

tool Model-Build [2, 3] — developed within the European

projects SafeAir and SafeAir2 — and the Polychrony work-

bench [23, 19, 18] are based on this idea. In this paper, we

report on our use of this kind of approach in the framework

of the Assert project.

Assert is a European Integrated Project devoted to the

design of embedded systems from the system architecture

level down to the code, with special emphasis on high-

level modeling, proof-based design, and component reuse.

Aerospace industry (avionics, launchers, and satellites) con-

stitutes the main application domain of Assert. In this

framework, we propose a methodology based on a high-

level behavioral modeling and verification of an application,

using a synchronous formalism. Since the automatic gener-

ation of distributed code is not an objective of the project,

the automatic code generation is only applied separately to

2006

The Cooking Book

Synchronous modeling and validation of schedulers dealing with
shared resources2

Erwan Jahier, Nicolas Halbwachs, Pascal Raymond

Jul 17 2008

Abstract

Architecture Description Languages (ADLs) allow embedded systems to be described as as-

semblies of hardware and software components. It is attractive to use such a global modelling

as a basis for early system analysis. However, in such descriptions, the applicative software is

often abstracted away, and is supposed to be developed in some host programming language.

This forbids to take the applicative software into account in such early validation. To over-

come this limitation, a solution consists in translating the ADL description into an executable

model, which can be simulated and validated together with the software. In a previous pa-

per [8], we proposed such a translation of AADL (Architecture Analysis & Design Language)

specifications into an executable synchronous model. The present paper is a continuation of

this work, and deals with expressing the behavior of complex scheduling policies managing

shared resources. We provide a synchronous specification for two shared resource schedul-

ing protocols: the well-known basic priority inheritance protocol (BIP), and the priority ceil-

ing protocol (PCP). This results in an automated translation of AADL models into a purely

Boolean synchronous (Lustre) scheduler, that can be directly model-checked, possibly with

the actual software.

Keywords: Embedded systems, Simulation, Scheduling, Formal Verification, Architecture Description

Languages, Synchronous Languages

Reviewers: Florence Maraninchi

Notes:

How to cite this report:

@techreport { ,

title = { Synchronous modeling and validation of schedulers dealing with shared resources3 },

authors = { Erwan Jahier, Nicolas Halbwachs, Pascal Raymond},

institution = { Verimag Research Report },

number = {TR-2008-10},

year = { },

note = { }
}

2008

VERIMAG
UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate

38610 GIERES

Tel. +33 4 76 63 48 48

Fax +33 4 76 63 48 50

Universite Joseph FourierCentre National de la Recherche Scientifique Institut National Polytechnique de Grenoble

Simulation and Verification of Asynchronous Systems

by means of a Synchronous Model∗

Nicolas Halbwachs and Louis Mandel†

Vérimag‡, Grenoble – France

c©IEEE Computer Society Press, ACSD’06

Abstract

Synchrony and asynchrony are commonly opposed

to each other. Now, in embedded applications, ac-

tual solutions are often situated in between, with syn-

chronous processes composed in a partially asynchronous

way. Examples of such intermediate solutions are GALS,

quasi-synchronous periodic processes, deadline-driven task

scheduling. . . In this paper, we illustrate the use of the syn-

chronous paradigm to model and validate such partially

asynchronous applications. We show that, through the use

of sporadic activation of processes and simulation of non-

determinism by the way of auxiliary inputs, the synchronous

paradigm allows a precise control of asynchrony. The ap-

proach is illustrated on a real case study, proposed in the

framework of the European Integrated project “Assert”.

1 Introduction

It is well admitted, now, that the synchronous

paradigm [4, 20] can significantly ease the modeling, pro-

gramming, and validation of embedded systems and soft-

ware. The synchronous parallel composition helps in struc-

turing the model, without introducing non-determinism.

The determinism of the model is also an invaluable advan-

tage for its validation: tests are reproducible, and model-

checking is not faced with the proliferation of states due to

non-deterministic interleaving of processes.

It is also recognized that the synchronous paradigm is

not the panacea, since it does not directly apply to intrinsi-

cally asynchronous situations, such as distributed systems,

or applications mixing long tasks and urgent sporadic re-

quests. This is why numerous works (see, e.g., [7] for a

synthesis) are devoted to combining synchrony with asyn-

chrony, or to extending the synchronous model towards less

∗This work was partially supported by the European Commission under

the Integrated Project Assert, IST 004033
†email: {Nicolas.Halbwachs, Louis.Mandel}@imag.fr
‡Verimag is a joint laboratory of Université Joseph Fourier, CNRS and

INPG associated with IMAG.

synchronous applications. For instance, “Communicating

reactive processes” [11] or “Multiclock Esterel” [10] are

extensions of the synchronous language Esterel [8] to cope

with non perfectly synchronous concurrency. On the other

hand, the paradigm of “Globally asynchronous, locally syn-

chronous systems” (GALS) has been proposed [16, 1, 9]

to describe general asynchronous systems, while keeping

as much as possible the advantages of synchronous com-

ponents. “Tag machines” [6, 5] are an even more general

and abstract attempt in the same direction. [17] mixes syn-

chronous (Signal) and asynchronous (Promela) models for

verifying GALS.

Another track of research addresses the compilation of

synchronous programs towards distributed or non strictly

synchronous code. While some distribution methods aim

at strictly preserving the synchronous semantics [13, 12],

other proposals only preserve the functional semantics [14,

15, 27, 26].

Finally, other works concern the modeling of asyn-

chronous systems within the synchronous paradigm. It

is well-known since [24, 25] that a synchronous formal-

ism can be used to express asynchrony. The only need

is to express sporadic activation (or stuttering) of pro-

cesses — which is allowed in all existing synchronous lan-

guages — and explicit non-determinism. The modeling

tool Model-Build [2, 3] — developed within the European

projects SafeAir and SafeAir2 — and the Polychrony work-

bench [23, 19, 18] are based on this idea. In this paper, we

report on our use of this kind of approach in the framework

of the Assert project.

Assert is a European Integrated Project devoted to the

design of embedded systems from the system architecture

level down to the code, with special emphasis on high-

level modeling, proof-based design, and component reuse.

Aerospace industry (avionics, launchers, and satellites) con-

stitutes the main application domain of Assert. In this

framework, we propose a methodology based on a high-

level behavioral modeling and verification of an application,

using a synchronous formalism. Since the automatic gener-

ation of distributed code is not an objective of the project,

the automatic code generation is only applied separately to

2006

The Cooking Book

Synchronous modeling and validation of schedulers dealing with
shared resources2

Erwan Jahier, Nicolas Halbwachs, Pascal Raymond

Jul 17 2008

Abstract

Architecture Description Languages (ADLs) allow embedded systems to be described as as-

semblies of hardware and software components. It is attractive to use such a global modelling

as a basis for early system analysis. However, in such descriptions, the applicative software is

often abstracted away, and is supposed to be developed in some host programming language.

This forbids to take the applicative software into account in such early validation. To over-

come this limitation, a solution consists in translating the ADL description into an executable

model, which can be simulated and validated together with the software. In a previous pa-

per [8], we proposed such a translation of AADL (Architecture Analysis & Design Language)

specifications into an executable synchronous model. The present paper is a continuation of

this work, and deals with expressing the behavior of complex scheduling policies managing

shared resources. We provide a synchronous specification for two shared resource schedul-

ing protocols: the well-known basic priority inheritance protocol (BIP), and the priority ceil-

ing protocol (PCP). This results in an automated translation of AADL models into a purely

Boolean synchronous (Lustre) scheduler, that can be directly model-checked, possibly with

the actual software.

Keywords: Embedded systems, Simulation, Scheduling, Formal Verification, Architecture Description

Languages, Synchronous Languages

Reviewers: Florence Maraninchi

Notes:

How to cite this report:

@techreport { ,

title = { Synchronous modeling and validation of schedulers dealing with shared resources3 },

authors = { Erwan Jahier, Nicolas Halbwachs, Pascal Raymond},

institution = { Verimag Research Report },

number = {TR-2008-10},

year = { },

note = { }
}

2008

978-1-4799-5001-0/14/$31.00 ©2014 IEEE

 8A4-1

VERIFICATION OF QUASI-SYNCHRONOUS SYSTEMS WITH UPPAAL

S. Bhattacharyya
+
, S. Miller

+
, J. Yang

++
, S. Smolka

++
, B. Meng

+++
, C.Sticksel

+++
, C. Tinelli

+++

+
Rockwell Collins, Advanced Technology Center, Cedar Rapids, IA

++
 SUNY, Stony Brook, NY

+++
 University of Iowa, Iowa City, IA

Abstract

Modern defense systems are complex distributed
software systems implemented over heterogeneous
and constantly evolving hardware and software
platforms. Distributed agreement protocols are often
developed exploiting the fact that their systems are
quasi-synchronous, where even though the clocks of
the different nodes are not synchronized, they all run
at the same rate, or multiples of the same rate,
modulo their drift and jitter.

This paper describes an effort to provide systems
designers and engineers with an intuitive modeling
environment that allows them to specify the high-
level architecture and synchronization logic of quasi-
synchronous systems using widely available systems-
engineering notations and tools. To this end, a
translator was developed that translates system
architectural models specified in a subset of SysML
into the Architectural Analysis and Description
Language (AADL). Translators were also developed
that translate the AADL models into the input
language of the Uppaal and Kind model checkers.

The Uppaal model checker. supports the
modeling, verification, and validation of real-time
systems modeled as a network of timed automata.
This paper focuses on the challenges encountered in
translating from AADL to Uppaal, and illustrates the
overall approach with a common avionics example:
the Pilot Flying System.

Keywords: AADL, quasi-synchronous, model
checking, verification, Uppaal, Pilot Flying system.

Introduction

Modern defense systems are complex software
systems implemented over heterogeneous and
constantly evolving hardware and software platforms.
Due to the failure rates of individual hardware
components, critical functions must be implemented
as redundant, fault-tolerant systems in order to meet

their reliability requirements. This is achieved by
distributing these functions over multiple processing
components connected by fault-tolerant networks.
When a system is replicated to achieve a high level of
reliability, the individual components still need to
agree on some part of the global system state, such as
which node is the current leader. While the amount of
state that needs to be consistent is often small, the
required consistency is essential for the correct
behavior of the system.

In developing distributed agreement protocols,
engineers often exploit the fact that their systems are
quasi-synchronous, where even though the clocks of
the different nodes are not synchronized, they all run
at the same rate, or multiples of the same rate,
modulo their drift and jitter. While such designs often
appear to work correctly at first, their intrinsic
asynchrony makes them prone to race and deadlock
conditions. These latent design errors often do not
appear until late in system integration or even after
the system is deployed.

This paper describes an effort to provide systems
designers and engineers with an intuitive modeling
environment that allows them to specify the high-
level architecture and synchronization logic of quasi-
synchronous systems using widely available system-
engineering notations and tools. A translator was
developed that translates system architectural models
specified in a subset of the SysML systems
engineering modeling language into the Architectural
Analysis and Description Language (AADL).
Translators were also developed that translate the
AADL models into the input language of the Uppaal
[1] and Kind [2] model checkers. Example quasi-
synchronous systems were created in SysML and
automatically translated into AADL, Kind, and
Uppaal. The Kind and Uppaal model checkers were
then used to verify these systems’ distributed
agreement protocols.

2014

VERIMAG
UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate

38610 GIERES

Tel. +33 4 76 63 48 48

Fax +33 4 76 63 48 50

Universite Joseph FourierCentre National de la Recherche Scientifique Institut National Polytechnique de Grenoble

Simulation and Verification of Asynchronous Systems

by means of a Synchronous Model∗

Nicolas Halbwachs and Louis Mandel†

Vérimag‡, Grenoble – France

c©IEEE Computer Society Press, ACSD’06

Abstract

Synchrony and asynchrony are commonly opposed

to each other. Now, in embedded applications, ac-

tual solutions are often situated in between, with syn-

chronous processes composed in a partially asynchronous

way. Examples of such intermediate solutions are GALS,

quasi-synchronous periodic processes, deadline-driven task

scheduling. . . In this paper, we illustrate the use of the syn-

chronous paradigm to model and validate such partially

asynchronous applications. We show that, through the use

of sporadic activation of processes and simulation of non-

determinism by the way of auxiliary inputs, the synchronous

paradigm allows a precise control of asynchrony. The ap-

proach is illustrated on a real case study, proposed in the

framework of the European Integrated project “Assert”.

1 Introduction

It is well admitted, now, that the synchronous

paradigm [4, 20] can significantly ease the modeling, pro-

gramming, and validation of embedded systems and soft-

ware. The synchronous parallel composition helps in struc-

turing the model, without introducing non-determinism.

The determinism of the model is also an invaluable advan-

tage for its validation: tests are reproducible, and model-

checking is not faced with the proliferation of states due to

non-deterministic interleaving of processes.

It is also recognized that the synchronous paradigm is

not the panacea, since it does not directly apply to intrinsi-

cally asynchronous situations, such as distributed systems,

or applications mixing long tasks and urgent sporadic re-

quests. This is why numerous works (see, e.g., [7] for a

synthesis) are devoted to combining synchrony with asyn-

chrony, or to extending the synchronous model towards less

∗This work was partially supported by the European Commission under

the Integrated Project Assert, IST 004033
†email: {Nicolas.Halbwachs, Louis.Mandel}@imag.fr
‡Verimag is a joint laboratory of Université Joseph Fourier, CNRS and

INPG associated with IMAG.

synchronous applications. For instance, “Communicating

reactive processes” [11] or “Multiclock Esterel” [10] are

extensions of the synchronous language Esterel [8] to cope

with non perfectly synchronous concurrency. On the other

hand, the paradigm of “Globally asynchronous, locally syn-

chronous systems” (GALS) has been proposed [16, 1, 9]

to describe general asynchronous systems, while keeping

as much as possible the advantages of synchronous com-

ponents. “Tag machines” [6, 5] are an even more general

and abstract attempt in the same direction. [17] mixes syn-

chronous (Signal) and asynchronous (Promela) models for

verifying GALS.

Another track of research addresses the compilation of

synchronous programs towards distributed or non strictly

synchronous code. While some distribution methods aim

at strictly preserving the synchronous semantics [13, 12],

other proposals only preserve the functional semantics [14,

15, 27, 26].

Finally, other works concern the modeling of asyn-

chronous systems within the synchronous paradigm. It

is well-known since [24, 25] that a synchronous formal-

ism can be used to express asynchrony. The only need

is to express sporadic activation (or stuttering) of pro-

cesses — which is allowed in all existing synchronous lan-

guages — and explicit non-determinism. The modeling

tool Model-Build [2, 3] — developed within the European

projects SafeAir and SafeAir2 — and the Polychrony work-

bench [23, 19, 18] are based on this idea. In this paper, we

report on our use of this kind of approach in the framework

of the Assert project.

Assert is a European Integrated Project devoted to the

design of embedded systems from the system architecture

level down to the code, with special emphasis on high-

level modeling, proof-based design, and component reuse.

Aerospace industry (avionics, launchers, and satellites) con-

stitutes the main application domain of Assert. In this

framework, we propose a methodology based on a high-

level behavioral modeling and verification of an application,

using a synchronous formalism. Since the automatic gener-

ation of distributed code is not an objective of the project,

the automatic code generation is only applied separately to

2006

The Cooking Book

Synchronous modeling and validation of schedulers dealing with
shared resources2

Erwan Jahier, Nicolas Halbwachs, Pascal Raymond

Jul 17 2008

Abstract

Architecture Description Languages (ADLs) allow embedded systems to be described as as-

semblies of hardware and software components. It is attractive to use such a global modelling

as a basis for early system analysis. However, in such descriptions, the applicative software is

often abstracted away, and is supposed to be developed in some host programming language.

This forbids to take the applicative software into account in such early validation. To over-

come this limitation, a solution consists in translating the ADL description into an executable

model, which can be simulated and validated together with the software. In a previous pa-

per [8], we proposed such a translation of AADL (Architecture Analysis & Design Language)

specifications into an executable synchronous model. The present paper is a continuation of

this work, and deals with expressing the behavior of complex scheduling policies managing

shared resources. We provide a synchronous specification for two shared resource schedul-

ing protocols: the well-known basic priority inheritance protocol (BIP), and the priority ceil-

ing protocol (PCP). This results in an automated translation of AADL models into a purely

Boolean synchronous (Lustre) scheduler, that can be directly model-checked, possibly with

the actual software.

Keywords: Embedded systems, Simulation, Scheduling, Formal Verification, Architecture Description

Languages, Synchronous Languages

Reviewers: Florence Maraninchi

Notes:

How to cite this report:

@techreport { ,

title = { Synchronous modeling and validation of schedulers dealing with shared resources3 },

authors = { Erwan Jahier, Nicolas Halbwachs, Pascal Raymond},

institution = { Verimag Research Report },

number = {TR-2008-10},

year = { },

note = { }
}

2008

978-1-4799-5001-0/14/$31.00 ©2014 IEEE

 8A4-1

VERIFICATION OF QUASI-SYNCHRONOUS SYSTEMS WITH UPPAAL

S. Bhattacharyya
+
, S. Miller

+
, J. Yang

++
, S. Smolka

++
, B. Meng

+++
, C.Sticksel

+++
, C. Tinelli

+++

+
Rockwell Collins, Advanced Technology Center, Cedar Rapids, IA

++
 SUNY, Stony Brook, NY

+++
 University of Iowa, Iowa City, IA

Abstract

Modern defense systems are complex distributed
software systems implemented over heterogeneous
and constantly evolving hardware and software
platforms. Distributed agreement protocols are often
developed exploiting the fact that their systems are
quasi-synchronous, where even though the clocks of
the different nodes are not synchronized, they all run
at the same rate, or multiples of the same rate,
modulo their drift and jitter.

This paper describes an effort to provide systems
designers and engineers with an intuitive modeling
environment that allows them to specify the high-
level architecture and synchronization logic of quasi-
synchronous systems using widely available systems-
engineering notations and tools. To this end, a
translator was developed that translates system
architectural models specified in a subset of SysML
into the Architectural Analysis and Description
Language (AADL). Translators were also developed
that translate the AADL models into the input
language of the Uppaal and Kind model checkers.

The Uppaal model checker. supports the
modeling, verification, and validation of real-time
systems modeled as a network of timed automata.
This paper focuses on the challenges encountered in
translating from AADL to Uppaal, and illustrates the
overall approach with a common avionics example:
the Pilot Flying System.

Keywords: AADL, quasi-synchronous, model
checking, verification, Uppaal, Pilot Flying system.

Introduction

Modern defense systems are complex software
systems implemented over heterogeneous and
constantly evolving hardware and software platforms.
Due to the failure rates of individual hardware
components, critical functions must be implemented
as redundant, fault-tolerant systems in order to meet

their reliability requirements. This is achieved by
distributing these functions over multiple processing
components connected by fault-tolerant networks.
When a system is replicated to achieve a high level of
reliability, the individual components still need to
agree on some part of the global system state, such as
which node is the current leader. While the amount of
state that needs to be consistent is often small, the
required consistency is essential for the correct
behavior of the system.

In developing distributed agreement protocols,
engineers often exploit the fact that their systems are
quasi-synchronous, where even though the clocks of
the different nodes are not synchronized, they all run
at the same rate, or multiples of the same rate,
modulo their drift and jitter. While such designs often
appear to work correctly at first, their intrinsic
asynchrony makes them prone to race and deadlock
conditions. These latent design errors often do not
appear until late in system integration or even after
the system is deployed.

This paper describes an effort to provide systems
designers and engineers with an intuitive modeling
environment that allows them to specify the high-
level architecture and synchronization logic of quasi-
synchronous systems using widely available system-
engineering notations and tools. A translator was
developed that translates system architectural models
specified in a subset of the SysML systems
engineering modeling language into the Architectural
Analysis and Description Language (AADL).
Translators were also developed that translate the
AADL models into the input language of the Uppaal
[1] and Kind [2] model checkers. Example quasi-
synchronous systems were created in SysML and
automatically translated into AADL, Kind, and
Uppaal. The Kind and Uppaal model checkers were
then used to verify these systems’ distributed
agreement protocols.

2014

FORMAL VERIFICATION OF QUASI-SYNCHRONOUS SYSTEMS

ROCKWELL COLLINS

JULY 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-171

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

2015

VERIMAG
UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate

38610 GIERES

Tel. +33 4 76 63 48 48

Fax +33 4 76 63 48 50

Universite Joseph FourierCentre National de la Recherche Scientifique Institut National Polytechnique de Grenoble

Simulation and Verification of Asynchronous Systems

by means of a Synchronous Model∗

Nicolas Halbwachs and Louis Mandel†

Vérimag‡, Grenoble – France

c©IEEE Computer Society Press, ACSD’06

Abstract

Synchrony and asynchrony are commonly opposed

to each other. Now, in embedded applications, ac-

tual solutions are often situated in between, with syn-

chronous processes composed in a partially asynchronous

way. Examples of such intermediate solutions are GALS,

quasi-synchronous periodic processes, deadline-driven task

scheduling. . . In this paper, we illustrate the use of the syn-

chronous paradigm to model and validate such partially

asynchronous applications. We show that, through the use

of sporadic activation of processes and simulation of non-

determinism by the way of auxiliary inputs, the synchronous

paradigm allows a precise control of asynchrony. The ap-

proach is illustrated on a real case study, proposed in the

framework of the European Integrated project “Assert”.

1 Introduction

It is well admitted, now, that the synchronous

paradigm [4, 20] can significantly ease the modeling, pro-

gramming, and validation of embedded systems and soft-

ware. The synchronous parallel composition helps in struc-

turing the model, without introducing non-determinism.

The determinism of the model is also an invaluable advan-

tage for its validation: tests are reproducible, and model-

checking is not faced with the proliferation of states due to

non-deterministic interleaving of processes.

It is also recognized that the synchronous paradigm is

not the panacea, since it does not directly apply to intrinsi-

cally asynchronous situations, such as distributed systems,

or applications mixing long tasks and urgent sporadic re-

quests. This is why numerous works (see, e.g., [7] for a

synthesis) are devoted to combining synchrony with asyn-

chrony, or to extending the synchronous model towards less

∗This work was partially supported by the European Commission under

the Integrated Project Assert, IST 004033
†email: {Nicolas.Halbwachs, Louis.Mandel}@imag.fr
‡Verimag is a joint laboratory of Université Joseph Fourier, CNRS and

INPG associated with IMAG.

synchronous applications. For instance, “Communicating

reactive processes” [11] or “Multiclock Esterel” [10] are

extensions of the synchronous language Esterel [8] to cope

with non perfectly synchronous concurrency. On the other

hand, the paradigm of “Globally asynchronous, locally syn-

chronous systems” (GALS) has been proposed [16, 1, 9]

to describe general asynchronous systems, while keeping

as much as possible the advantages of synchronous com-

ponents. “Tag machines” [6, 5] are an even more general

and abstract attempt in the same direction. [17] mixes syn-

chronous (Signal) and asynchronous (Promela) models for

verifying GALS.

Another track of research addresses the compilation of

synchronous programs towards distributed or non strictly

synchronous code. While some distribution methods aim

at strictly preserving the synchronous semantics [13, 12],

other proposals only preserve the functional semantics [14,

15, 27, 26].

Finally, other works concern the modeling of asyn-

chronous systems within the synchronous paradigm. It

is well-known since [24, 25] that a synchronous formal-

ism can be used to express asynchrony. The only need

is to express sporadic activation (or stuttering) of pro-

cesses — which is allowed in all existing synchronous lan-

guages — and explicit non-determinism. The modeling

tool Model-Build [2, 3] — developed within the European

projects SafeAir and SafeAir2 — and the Polychrony work-

bench [23, 19, 18] are based on this idea. In this paper, we

report on our use of this kind of approach in the framework

of the Assert project.

Assert is a European Integrated Project devoted to the

design of embedded systems from the system architecture

level down to the code, with special emphasis on high-

level modeling, proof-based design, and component reuse.

Aerospace industry (avionics, launchers, and satellites) con-

stitutes the main application domain of Assert. In this

framework, we propose a methodology based on a high-

level behavioral modeling and verification of an application,

using a synchronous formalism. Since the automatic gener-

ation of distributed code is not an objective of the project,

the automatic code generation is only applied separately to

2006

The Cooking Book

Synchronous modeling and validation of schedulers dealing with
shared resources2

Erwan Jahier, Nicolas Halbwachs, Pascal Raymond

Jul 17 2008

Abstract

Architecture Description Languages (ADLs) allow embedded systems to be described as as-

semblies of hardware and software components. It is attractive to use such a global modelling

as a basis for early system analysis. However, in such descriptions, the applicative software is

often abstracted away, and is supposed to be developed in some host programming language.

This forbids to take the applicative software into account in such early validation. To over-

come this limitation, a solution consists in translating the ADL description into an executable

model, which can be simulated and validated together with the software. In a previous pa-

per [8], we proposed such a translation of AADL (Architecture Analysis & Design Language)

specifications into an executable synchronous model. The present paper is a continuation of

this work, and deals with expressing the behavior of complex scheduling policies managing

shared resources. We provide a synchronous specification for two shared resource schedul-

ing protocols: the well-known basic priority inheritance protocol (BIP), and the priority ceil-

ing protocol (PCP). This results in an automated translation of AADL models into a purely

Boolean synchronous (Lustre) scheduler, that can be directly model-checked, possibly with

the actual software.

Keywords: Embedded systems, Simulation, Scheduling, Formal Verification, Architecture Description

Languages, Synchronous Languages

Reviewers: Florence Maraninchi

Notes:

How to cite this report:

@techreport { ,

title = { Synchronous modeling and validation of schedulers dealing with shared resources3 },

authors = { Erwan Jahier, Nicolas Halbwachs, Pascal Raymond},

institution = { Verimag Research Report },

number = {TR-2008-10},

year = { },

note = { }
}

2008

978-1-4799-5001-0/14/$31.00 ©2014 IEEE

 8A4-1

VERIFICATION OF QUASI-SYNCHRONOUS SYSTEMS WITH UPPAAL

S. Bhattacharyya
+
, S. Miller

+
, J. Yang

++
, S. Smolka

++
, B. Meng

+++
, C.Sticksel

+++
, C. Tinelli

+++

+
Rockwell Collins, Advanced Technology Center, Cedar Rapids, IA

++
 SUNY, Stony Brook, NY

+++
 University of Iowa, Iowa City, IA

Abstract

Modern defense systems are complex distributed
software systems implemented over heterogeneous
and constantly evolving hardware and software
platforms. Distributed agreement protocols are often
developed exploiting the fact that their systems are
quasi-synchronous, where even though the clocks of
the different nodes are not synchronized, they all run
at the same rate, or multiples of the same rate,
modulo their drift and jitter.

This paper describes an effort to provide systems
designers and engineers with an intuitive modeling
environment that allows them to specify the high-
level architecture and synchronization logic of quasi-
synchronous systems using widely available systems-
engineering notations and tools. To this end, a
translator was developed that translates system
architectural models specified in a subset of SysML
into the Architectural Analysis and Description
Language (AADL). Translators were also developed
that translate the AADL models into the input
language of the Uppaal and Kind model checkers.

The Uppaal model checker. supports the
modeling, verification, and validation of real-time
systems modeled as a network of timed automata.
This paper focuses on the challenges encountered in
translating from AADL to Uppaal, and illustrates the
overall approach with a common avionics example:
the Pilot Flying System.

Keywords: AADL, quasi-synchronous, model
checking, verification, Uppaal, Pilot Flying system.

Introduction

Modern defense systems are complex software
systems implemented over heterogeneous and
constantly evolving hardware and software platforms.
Due to the failure rates of individual hardware
components, critical functions must be implemented
as redundant, fault-tolerant systems in order to meet

their reliability requirements. This is achieved by
distributing these functions over multiple processing
components connected by fault-tolerant networks.
When a system is replicated to achieve a high level of
reliability, the individual components still need to
agree on some part of the global system state, such as
which node is the current leader. While the amount of
state that needs to be consistent is often small, the
required consistency is essential for the correct
behavior of the system.

In developing distributed agreement protocols,
engineers often exploit the fact that their systems are
quasi-synchronous, where even though the clocks of
the different nodes are not synchronized, they all run
at the same rate, or multiples of the same rate,
modulo their drift and jitter. While such designs often
appear to work correctly at first, their intrinsic
asynchrony makes them prone to race and deadlock
conditions. These latent design errors often do not
appear until late in system integration or even after
the system is deployed.

This paper describes an effort to provide systems
designers and engineers with an intuitive modeling
environment that allows them to specify the high-
level architecture and synchronization logic of quasi-
synchronous systems using widely available system-
engineering notations and tools. A translator was
developed that translates system architectural models
specified in a subset of the SysML systems
engineering modeling language into the Architectural
Analysis and Description Language (AADL).
Translators were also developed that translate the
AADL models into the input language of the Uppaal
[1] and Kind [2] model checkers. Example quasi-
synchronous systems were created in SysML and
automatically translated into AADL, Kind, and
Uppaal. The Kind and Uppaal model checkers were
then used to verify these systems’ distributed
agreement protocols.

2014

FORMAL VERIFICATION OF QUASI-SYNCHRONOUS SYSTEMS

ROCKWELL COLLINS

JULY 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-171

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

2015

For the quasi-synchronous

abstraction alone…

The Big Picture

A B

TA TB

0 < Tmin ≤ TA, TB ≤ Tmax

0 < τmin ≤ τA, τB ≤ τmax

τA

τB

A

B

A B

Scheduler

cA cB

A

B

Real-time Model (RT) Discrete-time Model (DT)

The Big Picture

A B

TA TB

0 < Tmin ≤ TA, TB ≤ Tmax

0 < τmin ≤ τA, τB ≤ τmax

τA

τB

A

B

A B

Scheduler

cA cB

A

B

Real-time Model (RT) Discrete-time Model (DT)

The Big Picture

A B

TA TB

0 < Tmin ≤ TA, TB ≤ Tmax

0 < τmin ≤ τA, τB ≤ τmax

τA

τB

A

B

A B

Scheduler

cA cB

A

B

Real-time Model (RT) Discrete-time Model (DT)

DT |= ϕ.

The Big Picture

A B

TA TB

0 < Tmin ≤ TA, TB ≤ Tmax

0 < τmin ≤ τA, τB ≤ τmax

τA

τB

A

B

A B

Scheduler

cA cB

A

B

Real-time Model (RT) Discrete-time Model (DT)

DT |= ϕ.l, RT |= ϕ

The Big Picture

A B

TA TB

0 < Tmin ≤ TA, TB ≤ Tmax

0 < τmin ≤ τA, τB ≤ τmax

τA

τB

A

B

A B

Scheduler

cA cB

A

B

Real-time Model (RT) Discrete-time Model (DT)

Soundness
DT |= ϕ.l, RT |= ϕ

Quasi-Periodic Architectures

• A set of “quasi-periodic” processes with local clocks and

nominal period (jitter)  

 

 

 

 clock activations  

• Buffered communication without message inversion or loss
• Bounded communication delay

or0 < Tmin ≤ T
n

≤ Tmax

T
n
− ε ≤ κi − κi−1 ≤ T

n
+ ε

(κi)i∈N

τmin ≤ τ ≤ τmax

T
n

ε

Definition (Quasi-Periodic Architecture):

Definition (Trace): A (quasi-periodic) trace is a set of activation

events and two functions  

• the date of event

• the transmission delay of message sent at to B

• t(Ai),• i

• τ(Ai, B),

{Ai | A ∈ N ∧ i ∈ N}
e E

0 < Tmin ≤ t(Ai+1)− t(Ai) ≤ Tmax, a

0 < τmin ≤ τ(Ai, B) ≤ τmax.

t Ai

For a quasi-periodic trace we have

Quasi-Periodic Architectures

Quasi-Periodic Architectures

Definition (Happened Before): For a trace , let be the smallest

relation on activation events that satisfies

(local) If

(recv) If then

et →

If i ≤ 0, Ai → Ai+1,If i ≤ 0, Ai → Ai+1,

If t(Ai) + τ(Ai, B) ≤ t(Bj)

e E

en Ai → Bj, a

Message receptions are not explicitly modelled.
Node are only triggered by their local clock

[Lamport 1978]

Unitary Discretization

Periodic sampling?

Unitary Discretization

Periodic sampling?

Unitary Discretization

Periodic sampling?

Event-driven sampling?

Unitary Discretization

Event-driven sampling?

Unitary Discretization

Event-driven sampling?

Unitary Discretization

Something is missing…

Event-driven sampling?

Unitary Discretization

Something is missing…

What about execution and transmission time?

Event-driven sampling?

Unitary Discretization

Something is missing…

What about execution and transmission time?

τexec

τtrans

Event-driven sampling?

Unitary Discretization

Something is missing…

What about execution and transmission time?

τexec

τtrans

τ = τexec + τtrans

Event-driven sampling?

Unitary Discretization

Something is missing…

What about execution and transmission time?

τexec

τtrans

τ = τexec + τtrans

τexec

τtrans
τtrans

Event-driven sampling?

Unitary Discretization

Something is missing…

What about execution and transmission time?

τexec

τtrans

τ = τexec + τtrans

τexec

τtrans
τtrans

τexec < Tmin

Event-driven sampling?

Unitary Discretization

Something is missing…

What about execution and transmission time?

τexec

τtrans

τ = τexec + τtrans

τexec

τtrans
τtrans

τexec < Tmin

unit-delay

Unitary Discretization

Event-driven sampling?

Unitary Discretization

Event-driven sampling?

Unitary Discretization

Event-driven sampling?

Half the events: much less possible interleavings

Unitary Discretization

Event-driven sampling?

Half the events: much less possible interleavings

Unitary Discretization

Event-driven sampling?

Half the events: much less possible interleavings

Unitary Discretization

Event-driven sampling?

Half the events: much less possible interleavings

Unitary Discretization

Event-driven sampling?

Half the events: much less possible interleavings

and A ◆ B. Node A communicate with node B

Unitary Discretization

Definition (Unitary Discretization): A function that

assigns each event in a (real-time) trace to a logical instant of a

corresponding discrete trace, is a unitary discretization if:

n f : E → N

and∀Ai, Bj ∈ E , Ai → Bj ⇐⇒ f(Ai) < f(Bj) and A ◆ B.

and A ◆ B. Node A communicate with node B

Unitary Discretization

Definition (Unitary Discretization): A function that

assigns each event in a (real-time) trace to a logical instant of a

corresponding discrete trace, is a unitary discretization if:

n f : E → N

and∀Ai, Bj ∈ E , Ai → Bj ⇐⇒ f(Ai) < f(Bj) and A ◆ B.

Map real-time and synchronous causality

and A ◆ B. Node A communicate with node B

Unitary Discretization

Definition (Unitary Discretization): A function that

assigns each event in a (real-time) trace to a logical instant of a

corresponding discrete trace, is a unitary discretization if:

n f : E → N

and∀Ai, Bj ∈ E , Ai → Bj ⇐⇒ f(Ai) < f(Bj) and A ◆ B.

Map real-time and synchronous causality

and A ◆ B. Node A communicate with node B

Unitary Discretization

Definition (Unitary Discretization): A function that

assigns each event in a (real-time) trace to a logical instant of a

corresponding discrete trace, is a unitary discretization if:

n f : E → N

and∀Ai, Bj ∈ E , Ai → Bj ⇐⇒ f(Ai) < f(Bj) and A ◆ B.

Map real-time and synchronous causality

and A ◆ B. Node A communicate with node B

Unitary Discretization

Definition (Unitary Discretization): A function that

assigns each event in a (real-time) trace to a logical instant of a

corresponding discrete trace, is a unitary discretization if:

n f : E → N

and∀Ai, Bj ∈ E , Ai → Bj ⇐⇒ f(Ai) < f(Bj) and A ◆ B.

Problem: Are quasi-periodic architectures unitary discretizable?

Map real-time and synchronous causality

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

We loose the link between discrete- and real-time

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Unitary Discretization

Twisting the tick?

Some traces cannot be unitary discretized

Theorem (2-nodes systems): A quasi-periodic

architectures with two nodes is unitary discretizable

if and only if
Tmin ≥ 2τmax.

Unitary Discretization

Tmin

τmax τmax Worst-case scenario

Theorem (2-nodes systems): A quasi-periodic

architectures with two nodes is unitary discretizable

if and only if
Tmin ≥ 2τmax.

Unitary Discretization

Tmin

τmax τmax Worst-case scenario

Theorem (2-nodes systems): A quasi-periodic

architectures with two nodes is unitary discretizable

if and only if
Tmin ≥ 2τmax.

Unitary Discretization

Tmin

τmax τmax Worst-case scenario

Theorem (2-nodes systems): A quasi-periodic

architectures with two nodes is unitary discretizable

if and only if
Tmin ≥ 2τmax.

Unitary Discretization

Tmin

τmax τmax Worst-case scenario
VE
R
IF
IE
D

Unitary Discretization

τmax

τmax

τmax

Theorem (general systems): A quasi-periodic

architectures with more than two nodes is, in general,

not unitary discretizable.

Always possible

Unitary Discretization

τmax

τmax

τmax

Theorem (general systems): A quasi-periodic

architectures with more than two nodes is, in general,

not unitary discretizable.

Always possible

Unitary Discretization

τmax

τmax

τmax

Theorem (general systems): A quasi-periodic

architectures with more than two nodes is, in general,

not unitary discretizable.

Always possible

Unitary Discretization

τmax

τmax

τmax

Theorem (general systems): A quasi-periodic

architectures with more than two nodes is, in general,

not unitary discretizable.

Always possible

Unitary Discretization

τmax

τmax

τmax

Theorem (general systems): A quasi-periodic

architectures with more than two nodes is, in general,

not unitary discretizable.

Always possible

Unitary Discretization

τmax

τmax

τmax

Theorem (general systems): A quasi-periodic

architectures with more than two nodes is, in general,

not unitary discretizable.

Always possible

Unitary Discretization

τmax

τmax

τmax

Theorem (general systems): A quasi-periodic

architectures with more than two nodes is, in general,

not unitary discretizable.

Always possible

Unitary Discretization

τmax

τmax

τmax

Theorem (general systems): A quasi-periodic

architectures with more than two nodes is, in general,

not unitary discretizable.

Always possible

Unitary Discretization

τmax

τmax

τmax

Theorem (general systems): A quasi-periodic

architectures with more than two nodes is, in general,

not unitary discretizable.

Always possible

Unitary Discretization

τmax

τmax

τmax

Theorem (general systems): A quasi-periodic

architectures with more than two nodes is, in general,

not unitary discretizable.

Always possible
VE
R
IF
IE
D

Constraining Communications

We gather all these constraints in a weighted graph

Vertices: Activations of the nodes

Edges:
• If then
• If and then

If Ai ! Bj
−!

and Ai 6! Bj en Bj
0
−! Ai.and A ◆ B.

en Ai
1
−! Bj, a

Proposition: If is a unitary discretization for a

trace, for a pair of nodes where we have thatand A ◆ B.

Ai ! Bj =) f(Ai) < f(Bj), a

Ai 6! Bj =) f(Ai) ≥ f(Bj).

If f
ve th

Constraining Communications

We gather all these constraints in a weighted graph

Vertices: Activations of the nodes

Edges:
• If then
• If and then

If Ai ! Bj
−!

and Ai 6! Bj en Bj
0
−! Ai.and A ◆ B.

en Ai
1
−! Bj, a

Proposition: If is a unitary discretization for a

trace, for a pair of nodes where we have thatand A ◆ B.

Ai ! Bj =) f(Ai) < f(Bj), a

Ai 6! Bj =) f(Ai) ≥ f(Bj).

If f
ve th

Ai
1
−! Bj =) f(Ai) < f(Bj), an

Bj
0
−! Ai =) f(Bj)  f(Ai).

Constraining Communications

Lemma: For a trace, there exists a unitary discretization

if and only if the corresponding graph has no cycle of

positive weight

Proof:
• If there is a cycle of positive weight, there is an  

event such that  

• Otherwise, the function that maps each event to the

longest path that lead to is a unitary discretization

ction of G there
, f(Ai) < f(Ai),on Ai

on Ai

on Ai

Ai
1
−→ Bj =⇒ f(Ai) < f(Bj), an

Bj
0
−→ Ai =⇒ f(Bj) ≤ f(Ai).

Constraining Communications

Lemma: For a trace, there exists a unitary discretization

if and only if the corresponding graph has no cycle of

positive weight

Proof:
• If there is a cycle of positive weight, there is an  

event such that  

• Otherwise, the function that maps each event to the

longest path that lead to is a unitary discretization

ction of G there
, f(Ai) < f(Ai),on Ai

on Ai

on Ai

Ai
1
−→ Bj =⇒ f(Ai) < f(Bj), an

Bj
0
−→ Ai =⇒ f(Bj) ≤ f(Ai).

Leave room for all the predecessors…

Constraining Communications

Proposition: A cycle of positive weight can be reduced

to a cycle of positive weight based on a u-cycle of the

communication graph.

A B

D C

A B

C

A B

D C

u-cycle: cycle of the undirected communication graph

Cycle Unbalanced Balanced

Theorem: A quasi-periodic architecture is unitary discretizable

if and only if

1. all u-cycle of the communication graph are either cycles or

balanced u-cycle, and,

2. there is no balanced u-cycle in the communication graph 

or , and,

3. there is no cycle in the communication graph, or

Constraining Communications

r τmin = τmax, a

Tmin ≥ Lcτmax

: size of the longest elementary communication cycleere Lc

A

B

C

D

E

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

A

B

C

D

E

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

A

B

C

D

E

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

A

B

C

D

E

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

A

B

C

D

E

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmin

A

B

C

D

E

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmin

1

A

B

C

D

E

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmin

τmin

1

A

B

C

D

E

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmin

1

τmin

1

A

B

C

D

E

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

⇒ ε = (

τmax

τmin

1

τmin

1

A

B

C

D

E

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

⇒ ε = (

τmax
0

τmin

1

τmin

1

A

B

C

D

E

⇒ ε = (

τmax

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

⇒ ε = (

τmax
0

τmin

1

τmin

1

A

B

C

D

E

⇒ ε = (

τmax

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

0

⇒ ε = (

τmax
0

τmin

1

τmin

1

A

B

C

D

E

⇒ ε = (

τmax

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmax

⇒ ε = (

0

⇒ ε = (

τmax
0

τmin

1

τmin

1

A

B

C

D

E

0

⇒ ε = (

τmax

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmax

⇒ ε = (

0

⇒ ε = (

τmax
0

τmin

1

τmin

1

A

B

C

D

E

0

⇒ ε = (

τmax

Constraining Communications

Proof: If there is a u-cycle, construction of a counter-example

A

B

C

DE

Communications

q = 3: #
p = 2: #

q > p =⇒ ε = (qτmax − pτmin)/q > 0

τmax

⇒ ε = (

We built a cycle of positive weight!

0

⇒ ε = (

τmax
0

τmin

1

τmin

1

Constraining Communications

Proof: On the other hand, by contraposition,

Constraining Communications

Proof: On the other hand, by contraposition,

PW/u-cycle

Constraining Communications

Proof: On the other hand, by contraposition,

PW/u-cycle

cycle

cycle

Constraining Communications

Proof: On the other hand, by contraposition,

PW/u-cycle

cycle

cycle balanced

balanced

Constraining Communications

Proof: On the other hand, by contraposition,

PW/u-cycle

cycle

cycle balanced

balanced

Cond
ition

 1.

Constraining Communications

Proof: On the other hand, by contraposition,

PW/u-cycle

cycle

cycle balanced

balanced+1 =⇒d τmin < τmax,

Cond
ition

 1.

Constraining Communications

Proof: On the other hand, by contraposition,

PW/u-cycle

cycle

cycle balanced

balanced+1 =⇒d τmin < τmax,

Cond
ition

 1.

Cond
ition

 2.

Constraining Communications

Proof: On the other hand, by contraposition,

PW/u-cycle

cycle

cycle balanced

balanced

+1 =⇒ Tmin ≥ Lcτmax

+1 =⇒d τmin < τmax,

Cond
ition

 1.

Cond
ition

 2.

Constraining Communications

Proof: On the other hand, by contraposition,

PW/u-cycle

cycle

cycle balanced

balanced

+1 =⇒ Tmin ≥ Lcτmax

+1 =⇒d τmin < τmax,

Cond
ition

 1.

Cond
ition

 2.

Cond
ition

 3.

The Quasi-Synchronous Abstraction

The Quasi-Synchronous Abstraction

But there is no direct link between discrete- and real-time

The Quasi-Synchronous Abstraction

But there is no direct link between discrete- and real-time

For any node:
1. there is no more than n activations between two message receptions
2. there is no more than n message receptions between two activations

Condition 1. Condition 2.

The Quasi-Synchronous Abstraction

But there is no direct link between discrete- and real-time

Definition (n-Quasi-Synchrony): A quasi-periodic architecture is

n-quasi-synchronous if for every trace t  

1. there exists a unitary discretization , and 

2. for any node , there is no chain of activation of length

greater than n, that is no i and j such that 

f(Bj) < f(Ai) < · · · < f(Ai+n) ≤ f(Bj+1)

f(Aj) ≤ f(Bi) < · · · < f(Bi+n) < f(Aj+1).

unitary di

es A ✓ B,

n f , a

The Quasi-Synchronous Abstraction

✓

t

f

]

·



f

f

]

∗
◆n

·



t
]



t

]

·

✓

f

f

]

∗

·



f

t

]◆n

,

The boolean vector associated to nodes A and B never contains

either of the subsequences

Condition 2.Condition 1.

Theorem: A quasi-periodic architecture is n-quasi-synchronous

if and only if

1. the conditions for unitary discretizability hold, and,

2. coucou

The Quasi-Synchronous Abstraction

nTmin + τmin ≥ Tmax + τmax.

Tmin

Tmax

τmax

τmin

Tmin…
(n+1) times

Worst-case scenario

Conclusion

The quasi-synchronous abstraction is a nice idea to reduce possible
interleavings when using verification tools for discrete models.

Conclusion

The quasi-synchronous abstraction is a nice idea to reduce possible
interleavings when using verification tools for discrete models.

Be careful with general systems.

It does not work for bus-based communications with more than two nodes.

Conclusion

The quasi-synchronous abstraction is a nice idea to reduce possible
interleavings when using verification tools for discrete models.

It works for two nodes…

Be careful with general systems.

It does not work for bus-based communications with more than two nodes.

Conclusion

The quasi-synchronous abstraction is a nice idea to reduce possible
interleavings when using verification tools for discrete models.

It works for two nodes…

Be careful with general systems.

It does not work for bus-based communications with more than two nodes.

VERIMAG
UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate

38610 GIERES

Tel. +33 4 76 63 48 48

Fax +33 4 76 63 48 50

Universite Joseph FourierCentre National de la Recherche Scientifique Institut National Polytechnique de Grenoble

Conclusion

The quasi-synchronous abstraction is a nice idea to reduce possible
interleavings when using verification tools for discrete models.

It works for two nodes…

Be careful with general systems.

It does not work for bus-based communications with more than two nodes.

VERIMAG
UNITE MIXTE DE RECHERCHE

Centre Equation

2 avenue de Vignate

38610 GIERES

Tel. +33 4 76 63 48 48

Fax +33 4 76 63 48 50

Universite Joseph FourierCentre National de la Recherche Scientifique Institut National Polytechnique de Grenoble

