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Symbolic Simulation
Comparison with existing tool

[Larsen et al. 1997] 

Australian Walk

Safe

Demo: Uppaal
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Difference Bound Matrices 

(DBM)

[Dill 1990]
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A way to discretize continuous systems
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Future Work

Prototype implementation in zŽlus !
Source to source transformation and runtime 

More complex clock domains !
octagon, polyhedron, É 

Under-approximation / Over-approximation !
safety vs. precision 

Generate discrete controllers !
for instance quasi-synchronous controllers 

Improve test coverage !
see [Alur et al 2008]


