
Symbolic Simulation of Clocks
Guillaume Baudart Timothy Bourke Marc Pouzet

Work In Progress

Example: Quasi-Periodic Architectures

ÒCooking BookÓ [Caspi 2000]

¥ A set of Òquasi-periodicÓ
processes with local clocks and
nominal period (jitter)!

!
!
!
!
 clock activations

¥ Buffered communication without
message inversion or loss

0 < T min ! Tn ! Tmax

Tn ! ! " " i ! " i ! 1 " Tn + !
or

(! i) i ! N

!Tn

M1

M4

M2

M3

Example: Quasi-Periodic Architectures

ÒCooking BookÓ [Caspi 2000]

¥ A set of Òquasi-periodicÓ
processes with local clocks and
nominal period (jitter)!

!
!
!
!
 clock activations

¥ Buffered communication without
message inversion or loss

0 < T min ! Tn ! Tmax

Tn ! ! " " i ! " i ! 1 " Tn + !
or

(! i) i ! N

!Tn

M1

M4

M2

M3

Example: Quasi-Periodic Architectures

ÒCooking BookÓ [Caspi 2000]

¥ A set of Òquasi-periodicÓ
processes with local clocks and
nominal period (jitter)!

!
!
!
!
 clock activations

¥ Buffered communication without
message inversion or loss

0 < T min ! Tn ! Tmax

Tn ! ! " " i ! " i ! 1 " Tn + !
or

(! i) i ! N

!Tn

M1

M4

M2

M3

Example: Quasi-Periodic Architectures
Fuzzy Metronome

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

clock x reset tic()

Fuzzy Metronome

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0]

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0] [x = 2.4]

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0] [x = 2.4] [x = 2.4]
in_x/

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0] [x = 2.4] [x = 3.5] [x = 2.4]
in_x/

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0] [x = 2.4] [x = 3.5] [x = 2.4]
in_x/

[x = 0]
in_x/tic

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0]

[x = 0]

[x = 2.4] [x = 3.5] [x = 2.4]
in_x/

[x = 0]
in_x/tic

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0]

[x = 0]

[x = 2.4]

[x = 1.1]

[x = 3.5] [x = 2.4]
in_x/

[x = 0]
in_x/tic

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0]

[x = 0]

[x = 2.4]

[x = 1.1]

[x = 3.5] [x = 2.4]
in_x/

[x = 1.2]
in_x/

[x = 0]
in_x/tic

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0]

[x = 0]

[x = 2.4]

[x = 1.1]

[x = 3.5]

[x = 4.2]

[x = 2.4]
in_x/

[x = 1.2]
in_x/

[x = 0]
in_x/tic

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0]

[x = 0]

[x = 2.4]

[x = 1.1]

[x = 3.5]

[x = 4.2]

[x = 2.4]
in_x/

[x = 1.2]
in_x/

[x = 0]
in_x/tic

[x = 0]
in_x/tic

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0]

[x = 0]

[x = 2.4]

[x = 1.1]

[x = 3.5]

[x = 4.2]

[x = 2.4]
in_x/

[x = 1.2]
in_x/

[x = 0]
in_x/tic

[x = 0]
in_x/tic

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0]

[x = 0]

[x = 2.4]

[x = 1.1]

[x = 3.5]

[x = 4.2]

[x = 2.4]
in_x/

[x = 1.2]
in_x/

[x = 0]
in_x/tic

[x = 0]
in_x/tic

[0 ! x! 3]

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0]

[x = 0]

[x = 2.4]

[x = 1.1]

[x = 3.5]

[x = 4.2]

[x = 2.4]
in_x/

[x = 1.2]
in_x/

[x = 0]
in_x/tic

[x = 0]
in_x/tic

[0 ! x! 3] in_x/ [0 ! x! 3]

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0]

[x = 0]

[x = 2.4]

[x = 1.1]

[x = 3.5]

[x = 4.2]

[x = 2.4]
in_x/

[x = 1.2]
in_x/

[x = 0]
in_x/tic

[x = 0]
in_x/tic

[0 ! x! 3] in_x/ [0 ! x! 3] [3 ! x! 5] wait

tmin = 3 tmax = 5

Example: Quasi-Periodic Architectures

let hybrid metro (in_x, tmin, tmax) = tic where
 rec der x = 1.0 init 0.0 reset c() -> 0.0
 and tic = present in_x on (tmin <= x <= tmax) -> ()

Fuzzy Metronome

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

x ! Tmax

úx = 1
Tmin ! x / x := 0 , tic!

[x = 0]

[x = 0]

[x = 2.4]

[x = 1.1]

[x = 3.5]

[x = 4.2]

[x = 2.4]
in_x/

[x = 1.2]
in_x/

[x = 0]
in_x/tic

[x = 0]
in_x/tic

[0 ! x! 3] [0 ! x! 3]
in_x/ticin_x/ [0 ! x! 3] [3 ! x! 5] wait

tmin = 3 tmax = 5

Symbolic Simulation
DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

Symbolic Simulation
DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

For each state, there is a set of enabled actions:

¥ Transition on inputs

¥ Non-determinism (additional inputs + boolean constraint)

¥ Time elapse

Simulation Box

in_x

in_y

wait

x

y

Symbolic Simulation
DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

For each state, there is a set of enabled actions:

¥ Transition on inputs

¥ Non-determinism (additional inputs + boolean constraint)

¥ Time elapse

Simulation Box

in_x

in_y

wait

x

y
x

regular inputs

Symbolic Simulation
DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

For each state, there is a set of enabled actions:

¥ Transition on inputs

¥ Non-determinism (additional inputs + boolean constraint)

¥ Time elapse

Simulation Box

in_x

in_y

wait

x

y
x

regular inputs

additional inputs

for non determinism
x

Symbolic Simulation
DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

For each state, there is a set of enabled actions:

¥ Transition on inputs

¥ Non-determinism (additional inputs + boolean constraint)

¥ Time elapse

Simulation Box

in_x

in_y

wait

x

y
x

regular inputs

x
time elapse

additional inputs

for non determinism
x

Symbolic Simulation
DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

For each state, there is a set of enabled actions:

¥ Transition on inputs

¥ Non-determinism (additional inputs + boolean constraint)

¥ Time elapse

Symbolic Simulation
Comparison with existing tool

Australian Walk

Symbolic Simulation
Comparison with existing tool

Australian Walk

Symbolic Simulation
Comparison with existing tool

Australian Walk

Safe

Symbolic Simulation
Comparison with existing tool

Australian Walk

Safe

Symbolic Simulation
Comparison with existing tool

Australian Walk

Safe

Symbolic Simulation
Comparison with existing tool

Australian Walk

Safe

Symbolic Simulation
Comparison with existing tool

[Larsen et al. 1997]

Australian Walk

Safe

Demo: Uppaal

Symbolic Simulation

Safe

Australian Walk

Our proposal: keep a notion of time elapsing

Symbolic Simulation

Safe

Australian Walk

Our proposal: keep a notion of time elapsing

Symbolic Simulation

Safe

Australian Walk

Our proposal: keep a notion of time elapsing

Symbolic Simulation

Safe

Australian Walk

Our proposal: keep a notion of time elapsing

Symbolic Simulation

Safe

Australian Walk

Our proposal: keep a notion of time elapsing

Symbolic Simulation

Safe

Australian Walk

Our proposal: keep a notion of time elapsing

Symbolic Simulation

Safe

Australian Walk

Our proposal: keep a notion of time elapsing

Symbolic Simulation

Safe

Australian Walk

Our proposal: keep a notion of time elapsing

Time ElapseÉ A New Horizon

[Halbwachs et al. 1994]

DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

Time ElapseÉ A New Horizon

[Halbwachs et al. 1994]

Increment all clocks at the same time: slide along direction (1, 1, É, 1)

DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

G

Time ElapseÉ A New Horizon
DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

G

Time ElapseÉ A New Horizon

For each action, two horizons: entering and leaving

DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

Action disabled

G

Time ElapseÉ A New Horizon

For each action, two horizons: entering and leaving

DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

Action disabled

G

Time ElapseÉ A New Horizon

For each action, two horizons: entering and leaving

DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

Action disabled

G

Time ElapseÉ A New Horizon

For each action, two horizons: entering and leaving

DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

G

Time ElapseÉ A New Horizon

Action enabled

For each action, two horizons: entering and leaving

DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

G

Time ElapseÉ A New Horizon

Action enabled

For each action, two horizons: entering and leaving

DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

G

Time ElapseÉ A New Horizon

For each action, two horizons: entering and leaving

DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

G

Time ElapseÉ A New Horizon

For each action, two horizons: entering and leaving

Action disabled

DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

G

Time ElapseÉ A New Horizon

For each action, two horizons: entering and leaving

Action disabled

DeÞnition: Two simulation states (q,s) and (qÕ,sÕ) are
equivalent if q = qÕ and actions(s) = actions(sÕ)

Language Restrictions

Clocks: der x = 1.0

Clock constraints: (x - y) ! e !

with ! " {# , <, >, $ } and e: float

Operations on clocks:

¥ Reset: x = v
¥ Translation: x = x + v
¥ Synchronization: x = y

A subset of ZŽlus

Language Restrictions

Clocks: der x = 1.0

Clock constraints: (x - y) ! e !

with ! " {# , <, >, $ } and e: float

Operations on clocks:

¥ Reset: x = v
¥ Translation: x = x + v
¥ Synchronization: x = y

A subset of ZŽlus

Difference Bound Matrices

(DBM)

[Dill 1990]

Compilation

Modularity: Each block returns the guard of the
enabled transitions.

Global State: A DBM represents clock constraints
of the entire system (current clock domain).

Simulation: At each step, we return the next
horizon and compute the next clock domain.

Compilation

Modularity: Each block returns the guard of the
enabled transitions.

Global State: A DBM represents clock constraints
of the entire system (current clock domain).

Simulation: At each step, we return the next
horizon and compute the next clock domain.

A way to discretize continuous systems

Example: Quasi-Periodic Architectures
Symbolic Simulation of a pair of quasi-periodic clocks?
let hybrid qp_archi (in_x, in_y) = ticA, ticB where
 rec ticA = metro (in_x, 3, 5)
 and ticB = metro (in_x, 3, 5)

3

5

3 5 x

y
B

in_x

in_y

A
t

wait

!
0 ! x < 3
0 ! y < 3
x " y = 0

"

Example: Quasi-Periodic Architectures
Symbolic Simulation of a pair of quasi-periodic clocks?
let hybrid qp_archi (in_x, in_y) = ticA, ticB where
 rec ticA = metro (in_x, 3, 5)
 and ticB = metro (in_x, 3, 5)

3

5

3 5 x

y
B

in_x

in_y

A
t

wait

!
3 ! x ! 5
3 ! y ! 5
x " y = 0

"

Example: Quasi-Periodic Architectures
Symbolic Simulation of a pair of quasi-periodic clocks?
let hybrid qp_archi (in_x, in_y) = ticA, ticB where
 rec ticA = metro (in_x, 3, 5)
 and ticB = metro (in_x, 3, 5)

3

5

3 5 x

y
B

in_x

in_y

A
t

wait

!
0 ! x < 2
3 ! y ! 5

3 ! y " x ! 5

"

Example: Quasi-Periodic Architectures
Symbolic Simulation of a pair of quasi-periodic clocks?
let hybrid qp_archi (in_x, in_y) = ticA, ticB where
 rec ticA = metro (in_x, 3, 5)
 and ticB = metro (in_x, 3, 5)

3

5

3 5 x

y
B

in_x

in_y

A

A
t

wait

!
0 ! x < 3
0 ! y ! 1

0 ! x " y ! 2

"

Example: Quasi-Periodic Architectures
Symbolic Simulation of a pair of quasi-periodic clocks?
let hybrid qp_archi (in_x, in_y) = ticA, ticB where
 rec ticA = metro (in_x, 3, 5)
 and ticB = metro (in_x, 3, 5)

3

5

3 5 x

y
B

in_x

in_y

A

A B
t

wait

!
1 ! x ! 5
1 ! y < 3

0 ! x " y ! 2

"

Example: Quasi-Periodic Architectures
Symbolic Simulation of a pair of quasi-periodic clocks?
let hybrid qp_archi (in_x, in_y) = ticA, ticB where
 rec ticA = metro (in_x, 3, 5)
 and ticB = metro (in_x, 3, 5)

3

5

3 5 x

y
B

in_x

in_y

A

A B
t

wait

!
3 ! x ! 5
3 ! y ! 5

0 ! x " y ! 2

"

Example: Quasi-Periodic Architectures
Symbolic Simulation of a pair of quasi-periodic clocks?
let hybrid qp_archi (in_x, in_y) = ticA, ticB where
 rec ticA = metro (in_x, 3, 5)
 and ticB = metro (in_x, 3, 5)

3

5

3 5 x

y
B

in_x

in_y

A

A B
t

wait

!
3 ! x ! 5
0 ! y ! 2

3 ! x " y ! 5

"

Example: Quasi-Periodic Architectures
Symbolic Simulation of a pair of quasi-periodic clocks?
let hybrid qp_archi (in_x, in_y) = ticA, ticB where
 rec ticA = metro (in_x, 3, 5)
 and ticB = metro (in_x, 3, 5)

3

5

3 5 x

y
B

in_x

in_y

A

A B B
t

wait

!
3 ! x ! 5
0 ! y ! 2

3 ! x " y ! 5

"

Example: Quasi-Periodic Architectures
Symbolic Simulation of a pair of quasi-periodic clocks?
let hybrid qp_archi (in_x, in_y) = ticA, ticB where
 rec ticA = metro (in_x, 3, 5)
 and ticB = metro (in_x, 3, 5)

3

5

3 5 x

y
B

in_x

in_y

A

A B B
t

wait

No more than two ticks of one clock

between two ticks of the other

Future Work

Prototype implementation in zŽlus !
Source to source transformation and runtime

More complex clock domains !
octagon, polyhedron, É

Under-approximation / Over-approximation !
safety vs. precision

Generate discrete controllers !
for instance quasi-synchronous controllers

Improve test coverage !
see [Alur et al 2008]

