Symbolic Simulation of Clocks

Guillaume Baudart

Timothy Bourke

Marc Pouzet

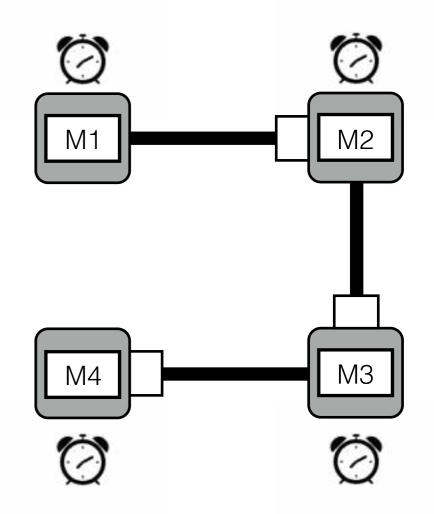
Work In Progress

 A set of "quasi-periodic" processes with local clocks and nominal period Tⁿ (jitter ε)

 $0 < T_{\min} \le T^n \le T_{\max}$ or $T^n - \varepsilon \le \kappa_i - \kappa_{i-1} \le T^n + \varepsilon$

 $(\kappa_i)_{i\in\mathbb{N}}$ clock activations

 Buffered communication without message inversion or loss



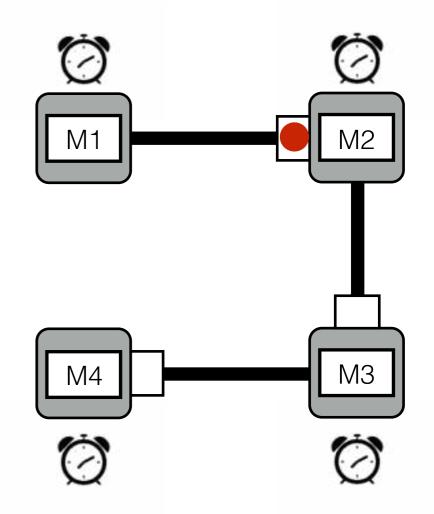
[&]quot;Cooking Book" [Caspi 2000]

 A set of "quasi-periodic" processes with local clocks and nominal period Tⁿ (jitter ε)

 $0 < T_{\min} \le T^n \le T_{\max}$ or $T^n - \varepsilon \le \kappa_i - \kappa_{i-1} \le T^n + \varepsilon$

 $(\kappa_i)_{i\in\mathbb{N}}$ clock activations

 Buffered communication without message inversion or loss

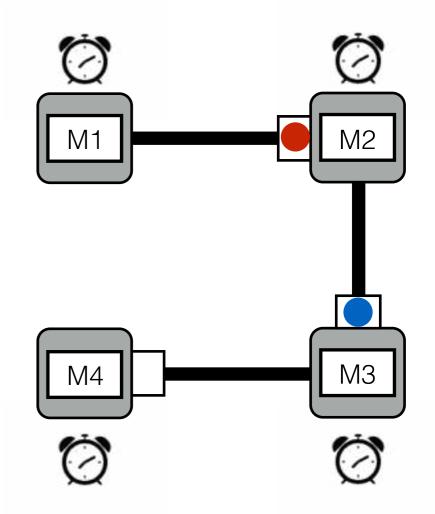


 A set of "quasi-periodic" processes with local clocks and nominal period Tⁿ (jitter ε)

 $0 < T_{\min} \le T^n \le T_{\max}$ or $T^n - \varepsilon \le \kappa_i - \kappa_{i-1} \le T^n + \varepsilon$

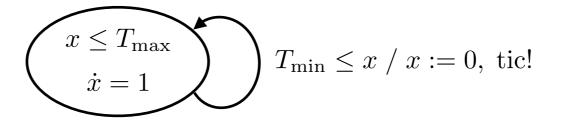
 $(\kappa_i)_{i\in\mathbb{N}}$ clock activations

 Buffered communication without message inversion or loss

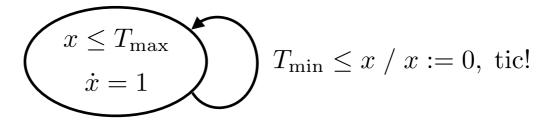


Fuzzy Metronome

$$\begin{array}{c} x \leq T_{\max} \\ \dot{x} = 1 \end{array} \quad T_{\min} \leq x \ / \ x := 0, \text{ tick} \end{array}$$



let hybrid metro (tmin, tmax) = tic where
rec clock x reset tic()
and tic = present (tmin <= x <= tmax) -> ()



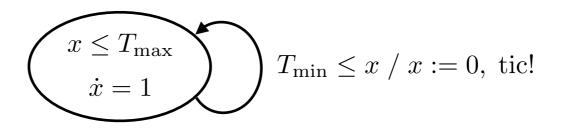
let hybrid metro (tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

$$\begin{array}{c} x \leq T_{\max} \\ \dot{x} = 1 \end{array} \qquad T_{\min} \leq x \ / \ x := 0, \ \text{tic!} \end{array}$$

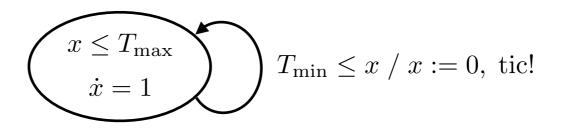
let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE



let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

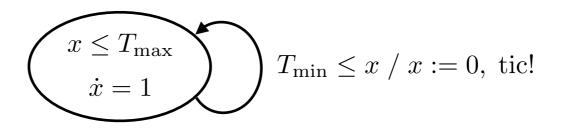


let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

[x = 0]

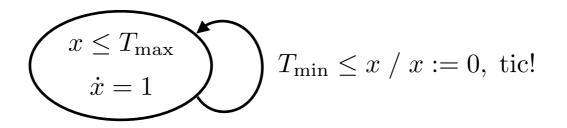


let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

 $[x = 0] \longrightarrow [x = 2.4]$

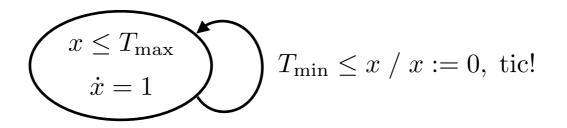


tmin = 3tmax = 5

let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

$$[x = 0] \longrightarrow [x = 2.4] \xrightarrow{in_x/} [x = 2.4]$$

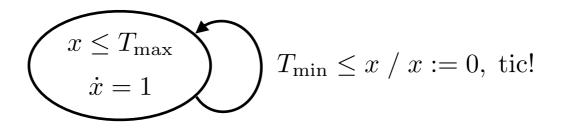


tmin = 3tmax = 5

let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

$$[x = 0] \longrightarrow [x = 2.4] \xrightarrow{in_x/} [x = 2.4] \longrightarrow [x = 3.5]$$

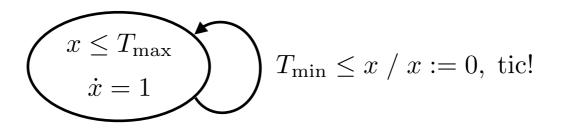


tmin = 3tmax = 5

let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

$$[x = 0] \longrightarrow [x = 2.4] \xrightarrow{\text{in}_x/} [x = 2.4] \longrightarrow [x = 3.5] \xrightarrow{\text{in}_x/\text{tic}} [x = 0]$$



tmin = 3tmax = 5

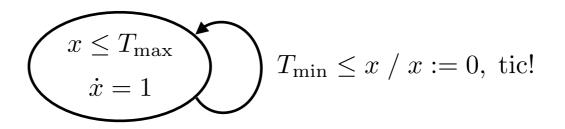
let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

$$[x = 0] \longrightarrow [x = 2.4] \xrightarrow{\text{in}_x/} [x = 2.4] \longrightarrow [x = 3.5] \xrightarrow{\text{in}_x/\text{tic}} [x = 0]$$

[x = 0]



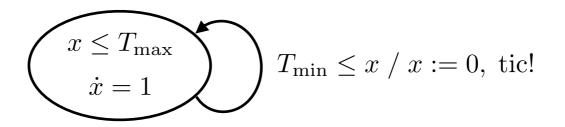
$$tmin = 3$$
$$tmax = 5$$

let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

 $[x = 0] \longrightarrow [x = 1.1]$

$$[x = 0] \longrightarrow [x = 2.4] \xrightarrow{\text{in}_x/} [x = 2.4] \longrightarrow [x = 3.5] \xrightarrow{\text{in}_x/\text{tic}} [x = 0]$$



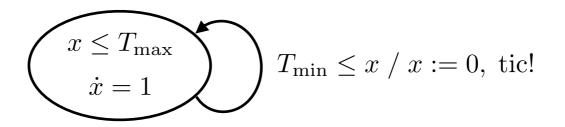
tmin = 3tmax = 5

let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

 $[x = 0] \longrightarrow [x = 2.4] \xrightarrow{\text{in}_x/} [x = 2.4] \longrightarrow [x = 3.5] \xrightarrow{\text{in}_x/\text{tic}} [x = 0]$ $[x = 0] \longrightarrow [x = 1.1] \xrightarrow{\text{in}_x/} [x = 1.2]$

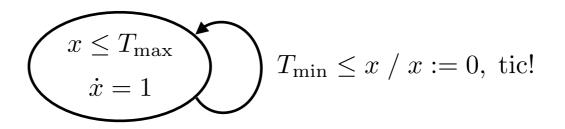


$$tmin = 3$$
$$tmax = 5$$

let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

$$[x = 0] \longrightarrow [x = 2.4] \xrightarrow{\text{in}_x/} [x = 2.4] \longrightarrow [x = 3.5] \xrightarrow{\text{in}_x/\text{tic}} [x = 0]$$
$$[x = 0] \longrightarrow [x = 1.1] \xrightarrow{\text{in}_x/} [x = 1.2] \longrightarrow [x = 4.2]$$

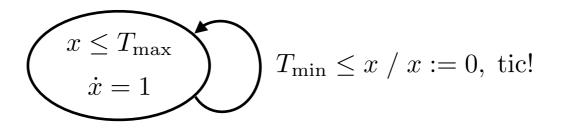


$$tmin = 3$$
$$tmax = 5$$

let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

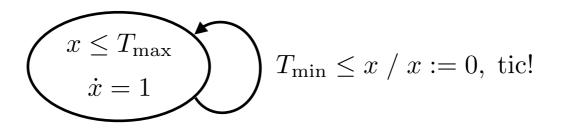
$$[x = 0] \longrightarrow [x = 2.4] \xrightarrow{\text{in}_x/} [x = 2.4] \longrightarrow [x = 3.5] \xrightarrow{\text{in}_x/\text{tic}} [x = 0]$$
$$[x = 0] \longrightarrow [x = 1.1] \xrightarrow{\text{in}_x/} [x = 1.2] \longrightarrow [x = 4.2] \xrightarrow{\text{in}_x/\text{tic}} [x = 0]$$



tmin = 3tmax = 5

let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

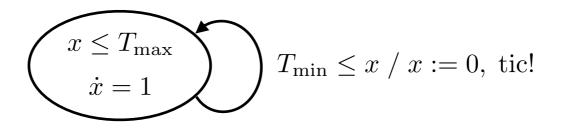


let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

Non-determinism is handle via additional inputs

[0≤x≤3]

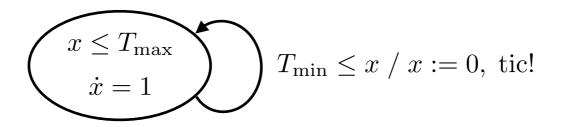


tmin = 3tmax = 5

let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

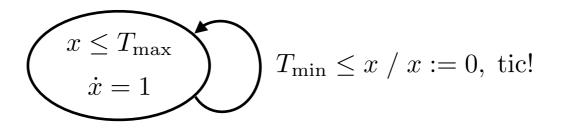
$$[0 \le x \le 3] \xrightarrow{\text{in}_x/} [0 \le x \le 3]$$



let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

Clock can be implemented as a simple ODE

$$[0 \le x \le 3] \xrightarrow{\text{in}_x/} [0 \le x \le 3] \xrightarrow{\text{wait}} [3 \le x \le 5]$$



let hybrid metro (in_x, tmin, tmax) = tic where rec der x = 1.0 init 0.0 reset c() -> 0.0 and tic = present in_x on (tmin <= x <= tmax) -> ()

 $[0 \le x \le 3] \xrightarrow{\text{in}_x/} [0 \le x \le 3] \xrightarrow{\text{wait}} [3 \le x \le 5] \xrightarrow{\text{in}_x/\text{tic}} [0 \le x \le 3]$

Clock can be implemented as a simple ODE

Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')

Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')

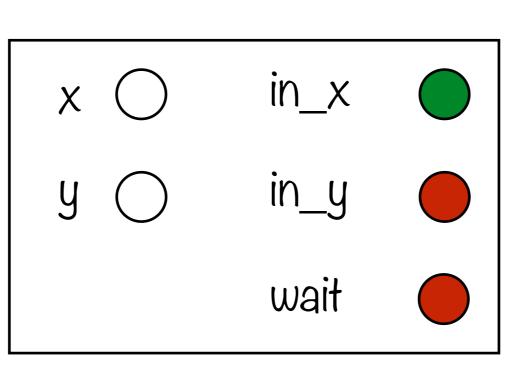
For each state, there is a set of enabled actions:

- Transition on inputs
- Non-determinism (additional inputs + boolean constraint)
- Time elapse

Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')

For each state, there is a set of enabled actions:

- Transition on inputs
- Non-determinism (additional inputs + boolean constraint)
- Time elapse

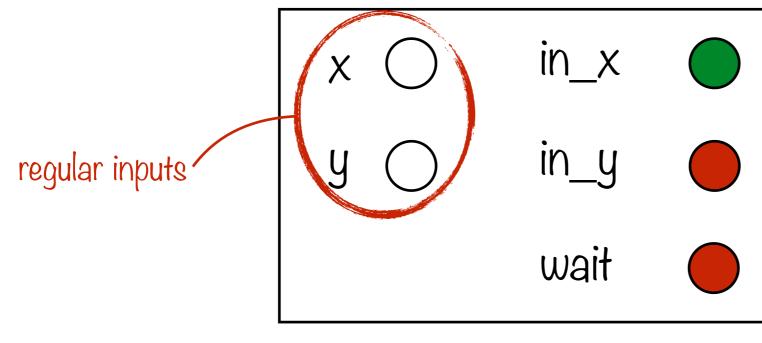


Simulation Box

Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')

For each state, there is a set of enabled actions:

- Transition on inputs
- Non-determinism (additional inputs + boolean constraint)
- Time elapse

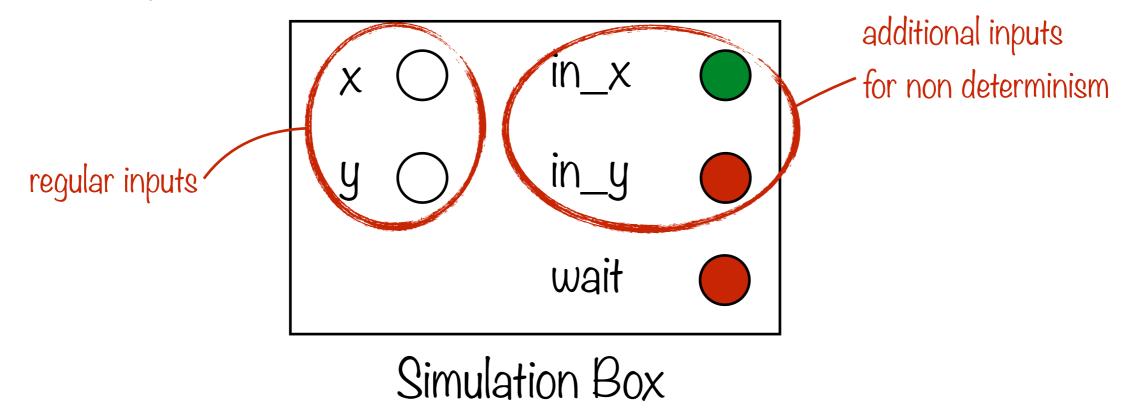


Simulation Box

Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')

For each state, there is a set of enabled actions:

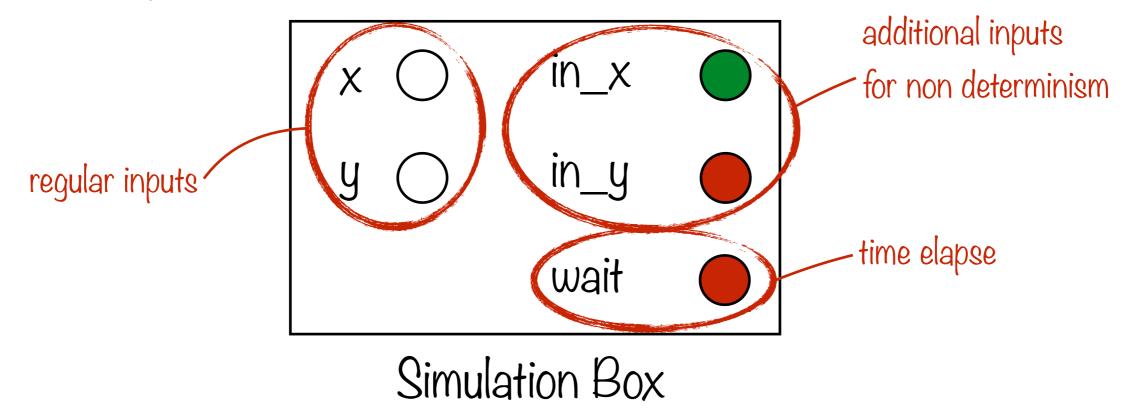
- Transition on inputs
- Non-determinism (additional inputs + boolean constraint)
- Time elapse



Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')

For each state, there is a set of enabled actions:

- Transition on inputs
- Non-determinism (additional inputs + boolean constraint)
- Time elapse



Comparison with existing tool

Australian Walk

Comparison with existing tool

Australian Walk

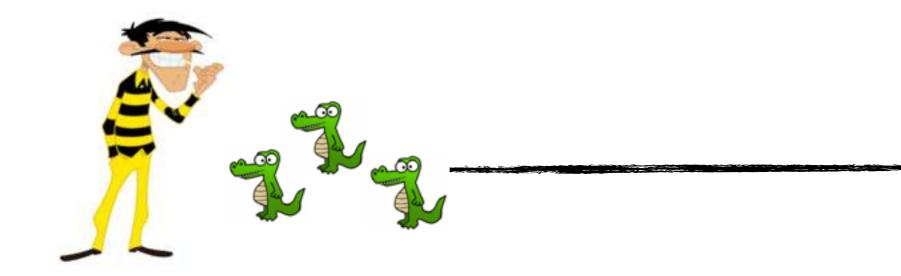
Comparison with existing tool

Australian Walk

Safe

Comparison with existing tool

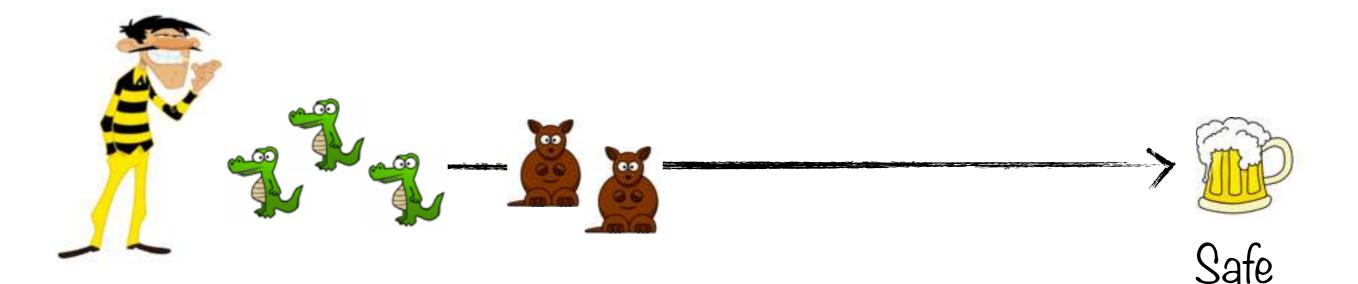
Australian Walk



Safe

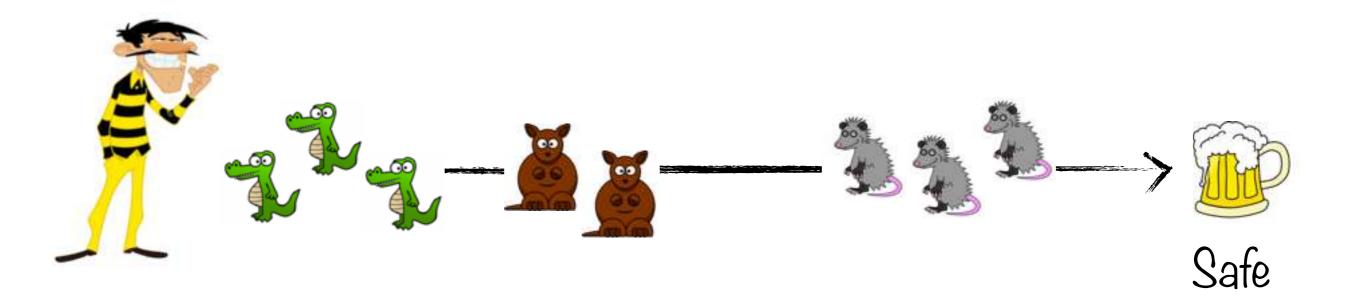
Comparison with existing tool

Australian Walk



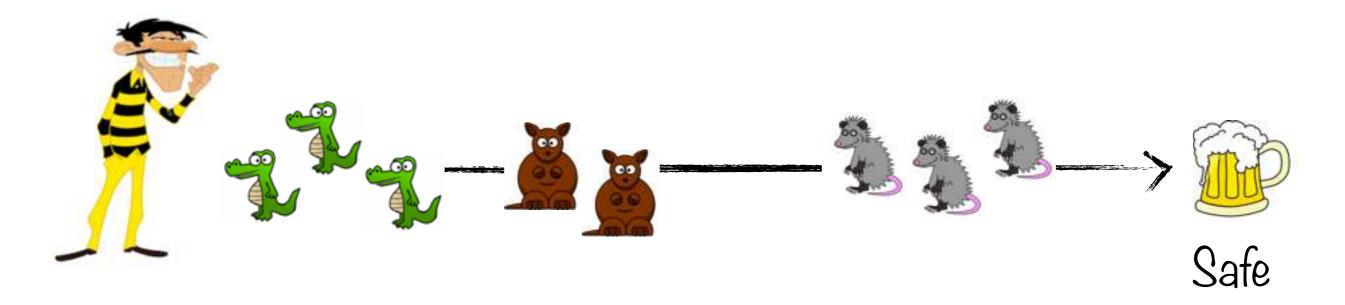
Comparison with existing tool

Australian Walk



Comparison with existing tool

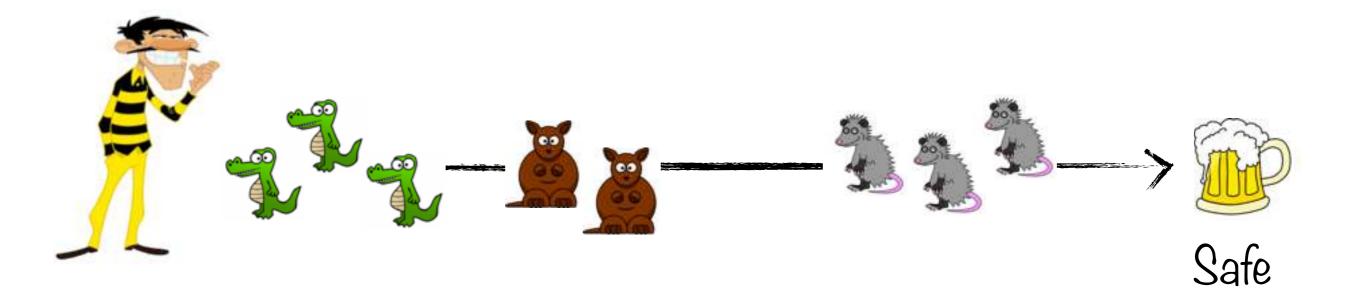
Australian Walk

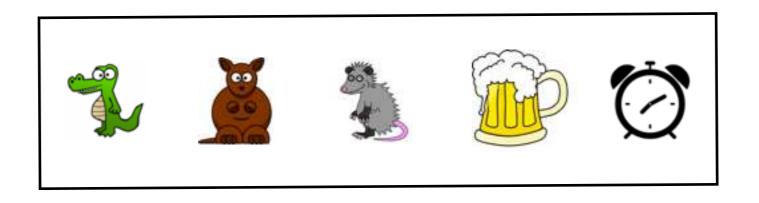


Demo: Uppaal

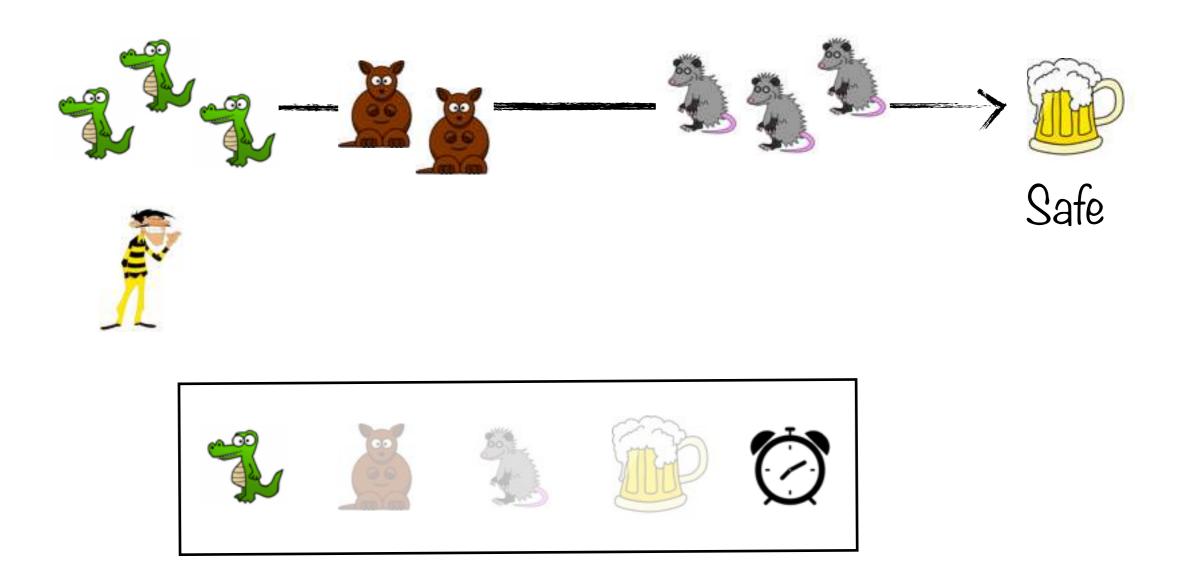
[Larsen et al. 1997]

Our proposal: keep a notion of time elapsing

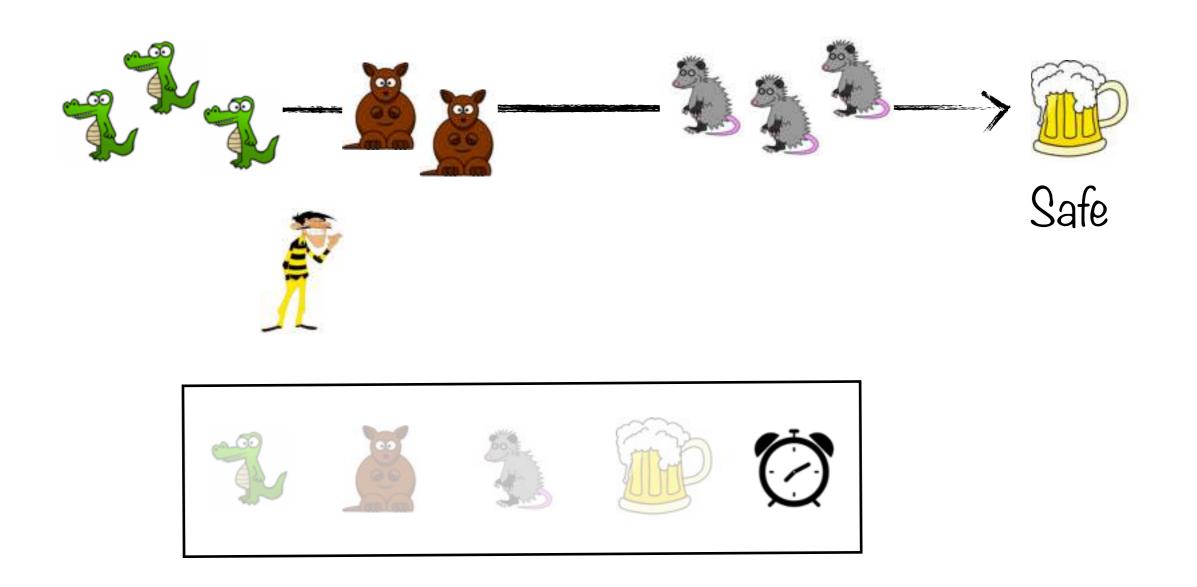




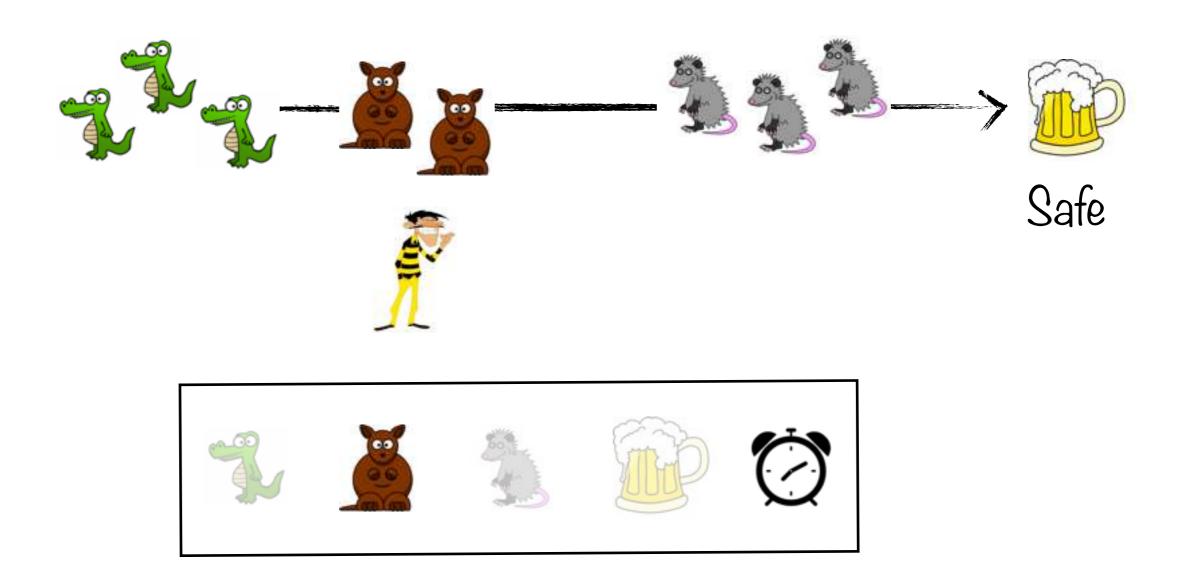
Our proposal: keep a notion of time elapsing



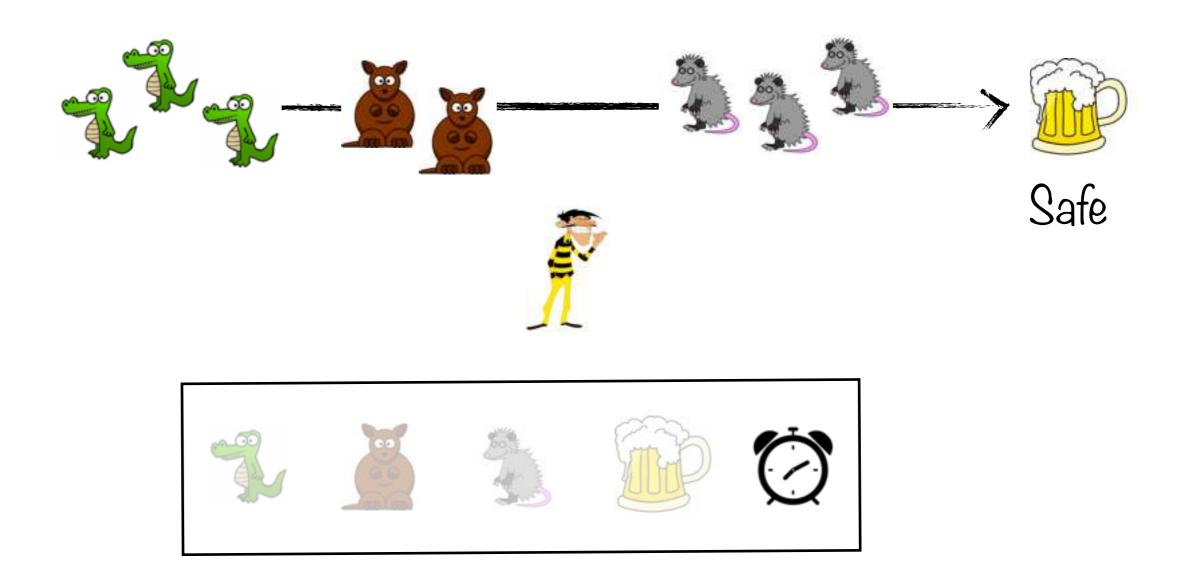
Our proposal: keep a notion of time elapsing



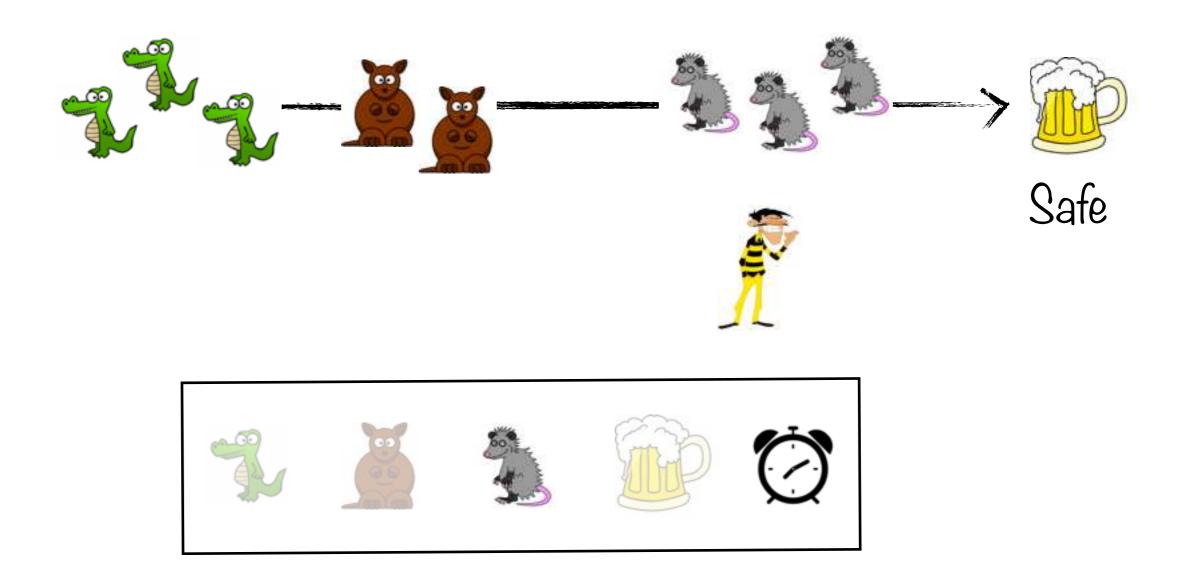
Our proposal: keep a notion of time elapsing



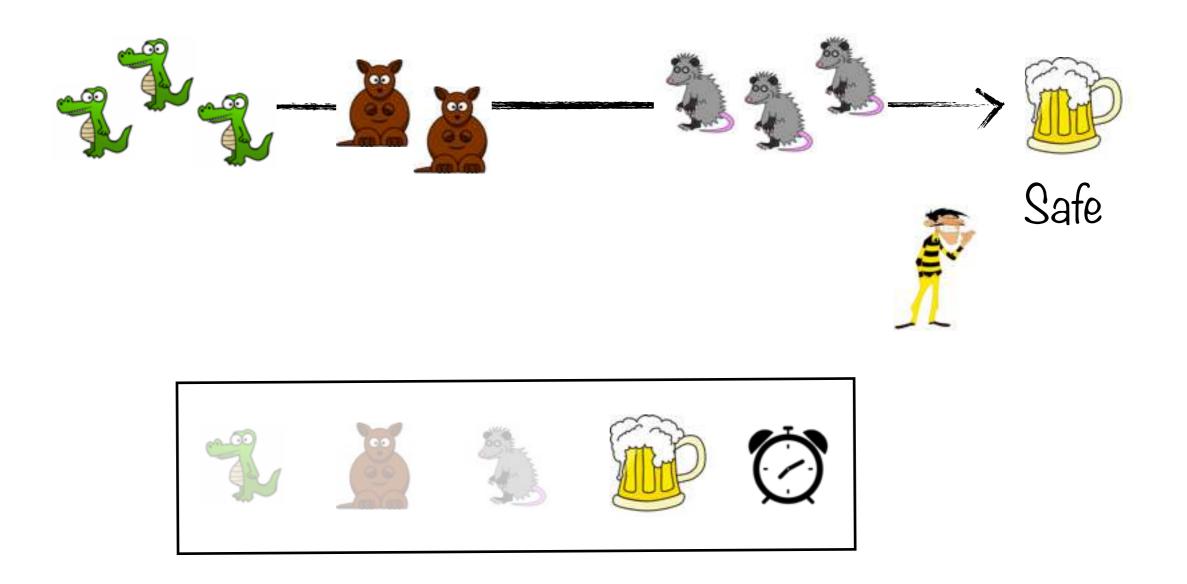
Our proposal: keep a notion of time elapsing



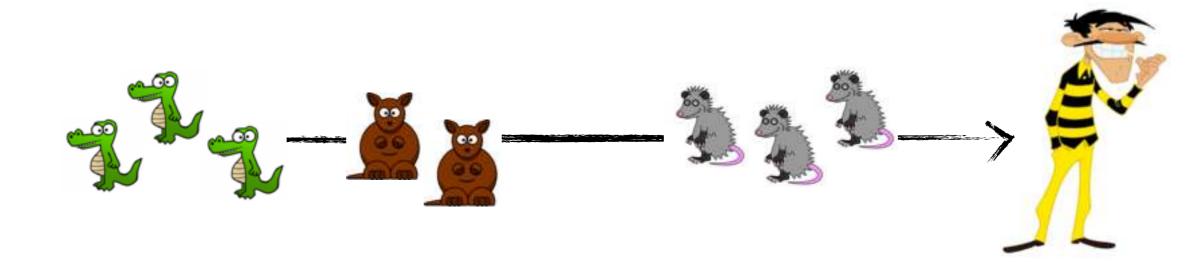
Our proposal: keep a notion of time elapsing

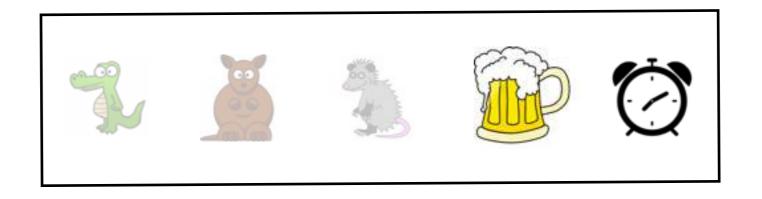


Our proposal: keep a notion of time elapsing

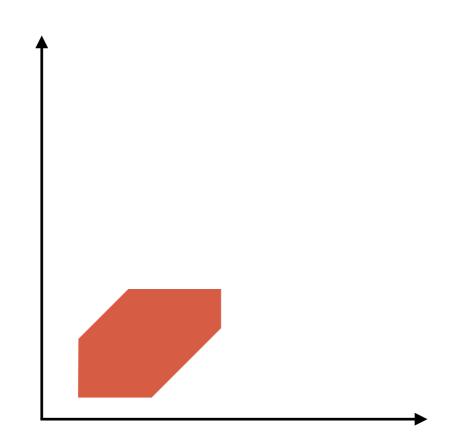


Our proposal: keep a notion of time elapsing

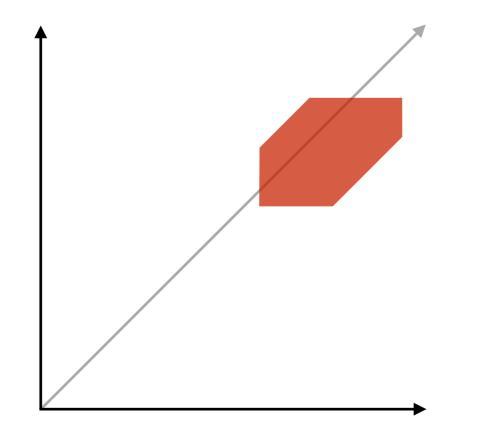




Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')



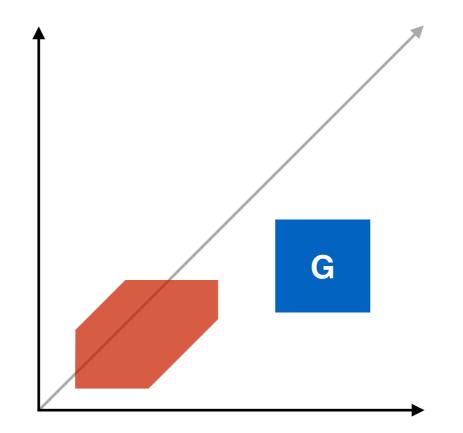
Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')



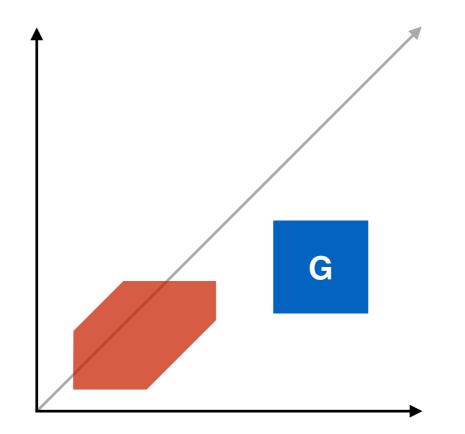
Increment all clocks at the same time: slide along direction (I, I, ..., I)

[[]Halbwachs et al. 1994]

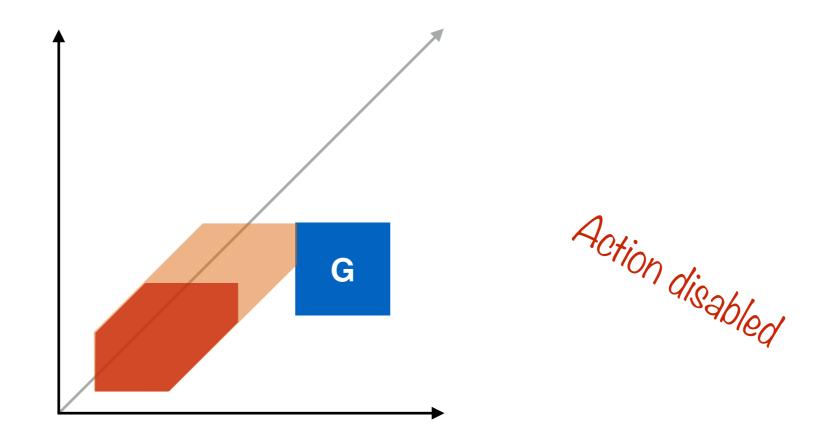
Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')



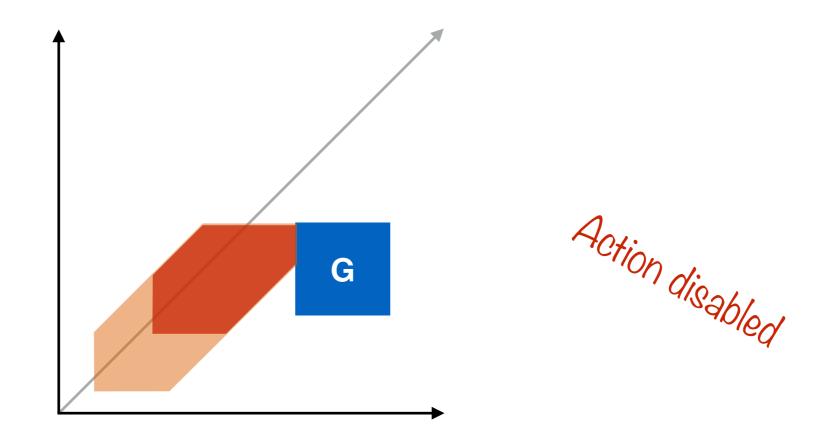
Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')



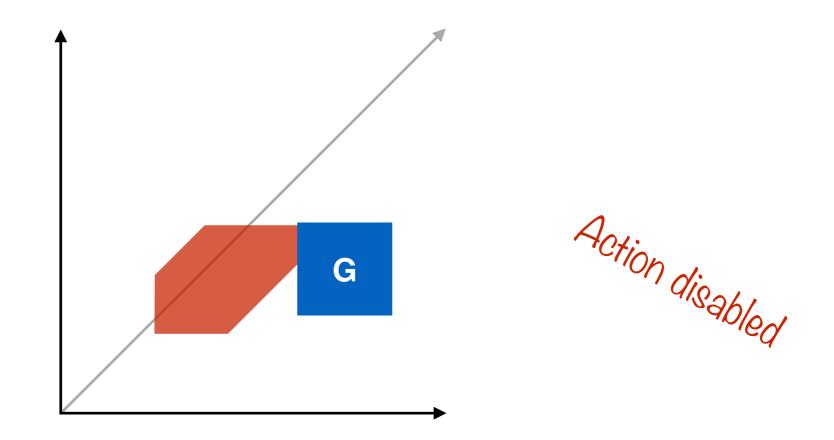
Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')



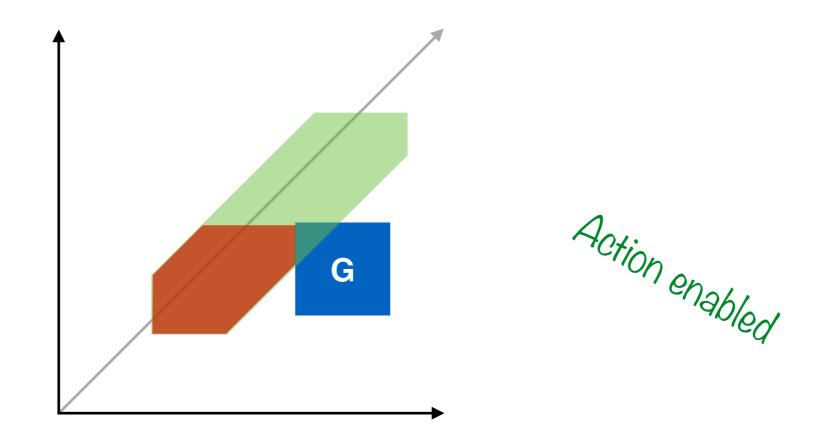
Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')



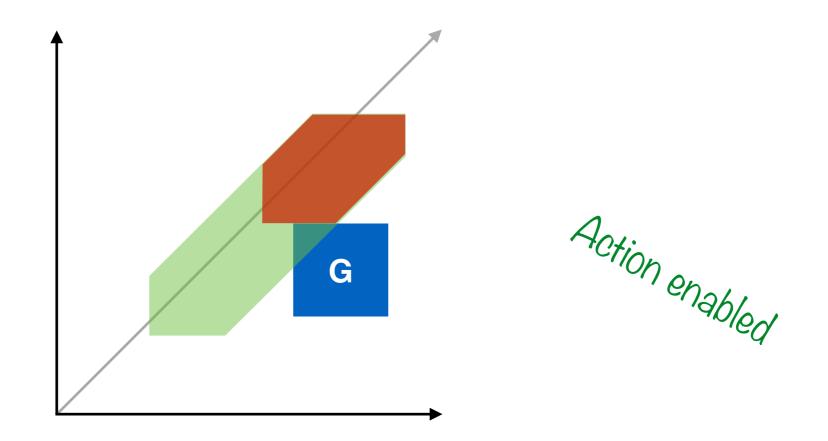
Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')



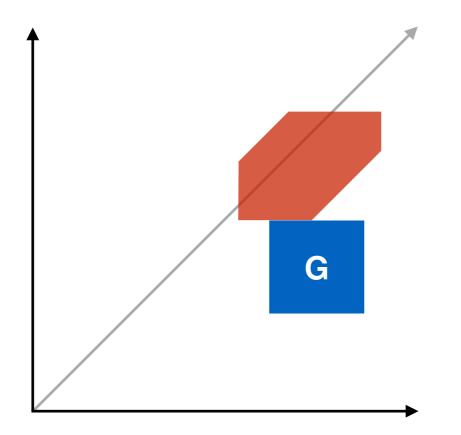
Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')



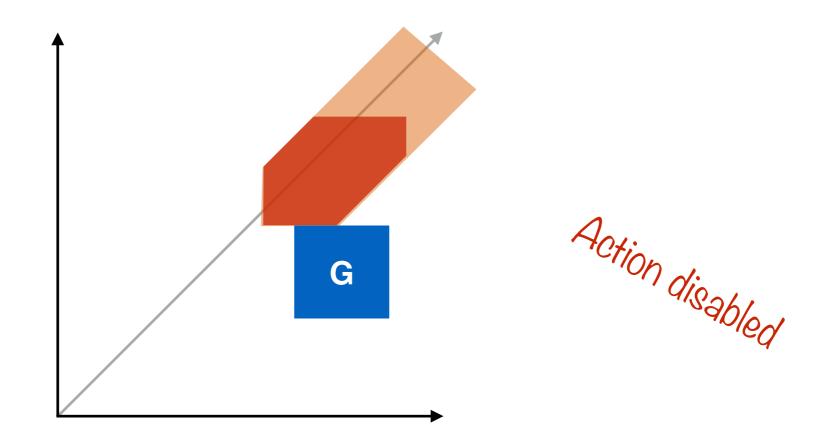
Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')



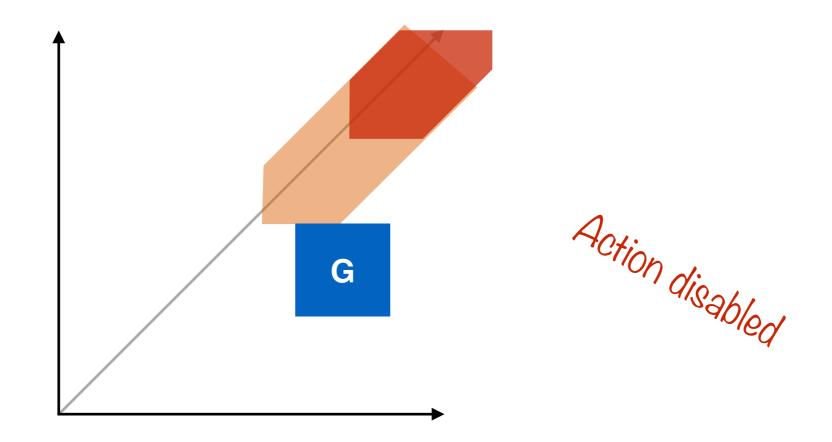
Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')



Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')



Definition: Two simulation states (q,s) and (q',s') are equivalent if q = q' and actions(s) = actions(s')



Language Restrictions

A subset of Zélus

Clocks: der x = 1.0

Clock constraints: $(x - y) \bowtie e$

with $\bowtie \in \{\leq, <, >, \geq\}$ and e: float

Operations on clocks:

- Reset: x = v
- Translation: x = x + v
- Synchronization: x = y

Language Restrictions

A subset of Zélus

Clocks: der x = 1.0

Clock constraints: $(x - y) \bowtie e$

Jifference Bound Matrices with $\bowtie \in \{\leq, <, >, \geq\}$ and e: float

Operations on clocks:

- Reset: x = v
- Translation: x = x + y
- Synchronization: x = y

Compilation

Modularity: Each block returns the guard of the enabled transitions.

Global State: A DBM represents clock constraints of the entire system (current clock domain).

Simulation: At each step, we return the next horizon and compute the next clock domain.

Compilation

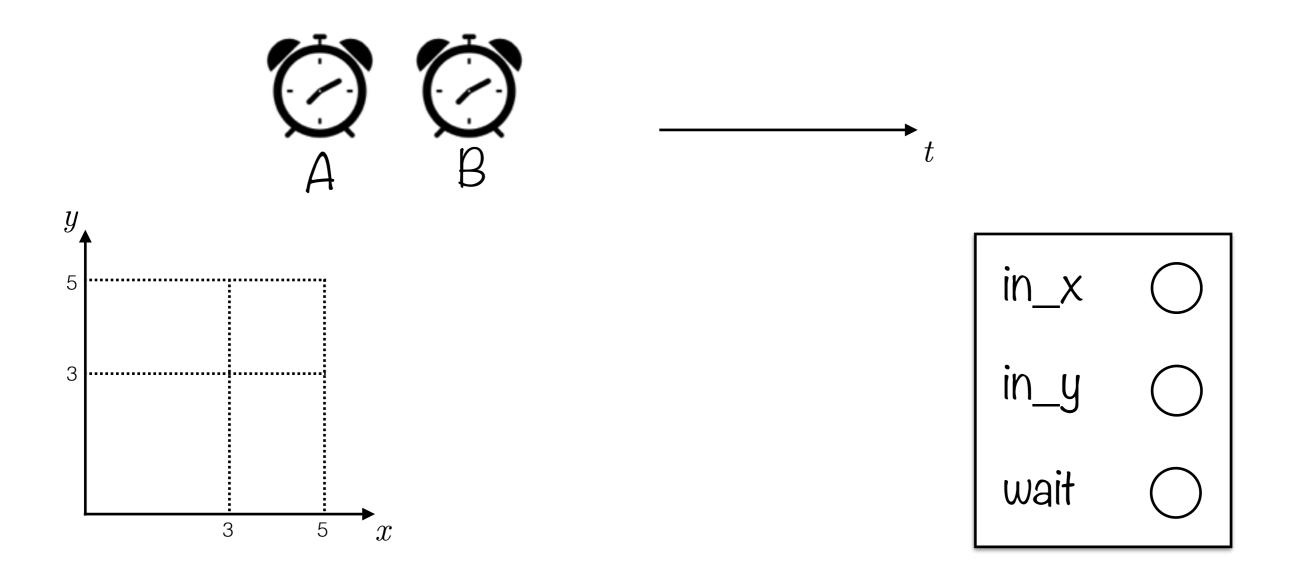
Modularity: Each block returns the guard of the enabled transitions.

Global State: A DBM represents clock constraints of the entire system (current clock domain).

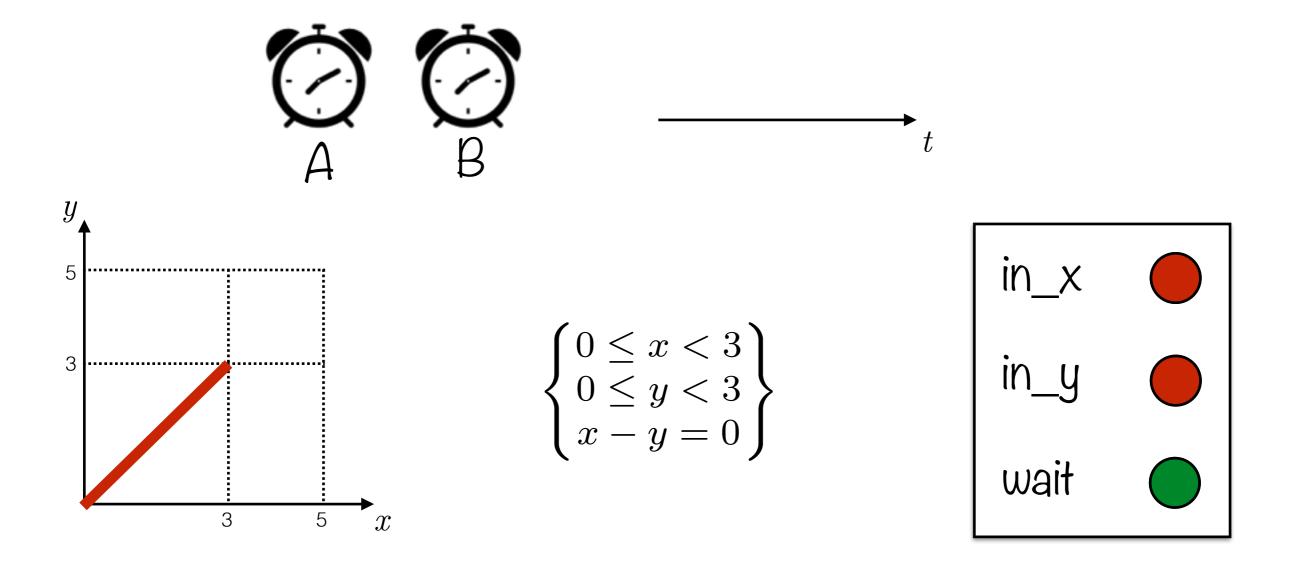
Simulation: At each step, we return the next horizon and compute the next clock domain.

A way to discretize continuous systems

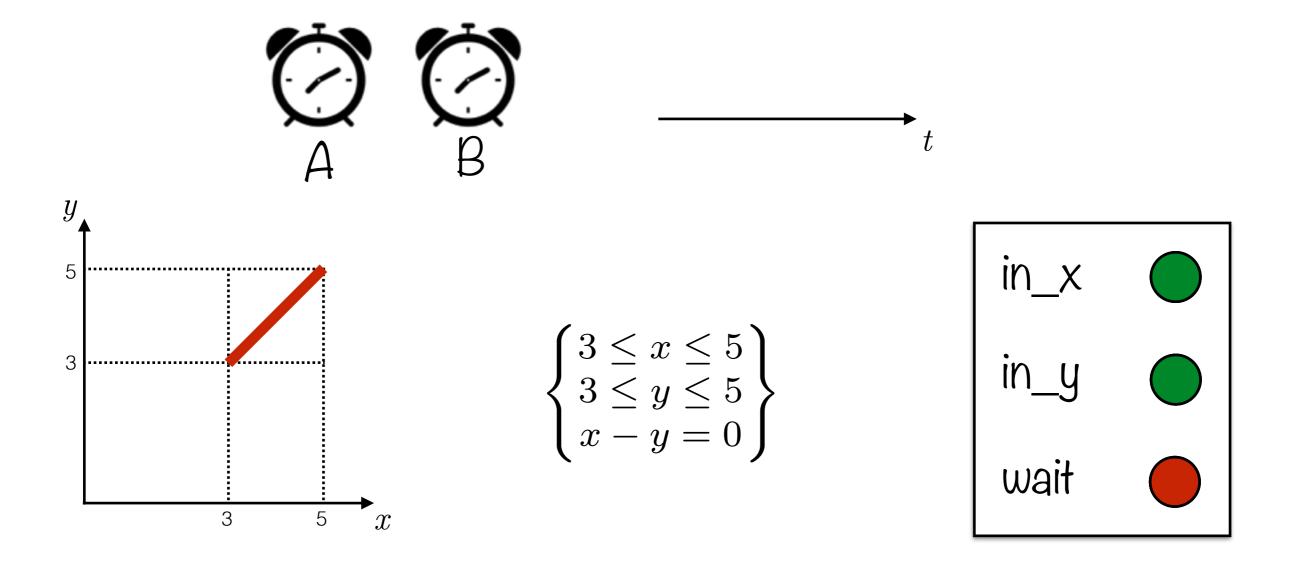
Symbolic Simulation of a pair of quasi-periodic clocks?



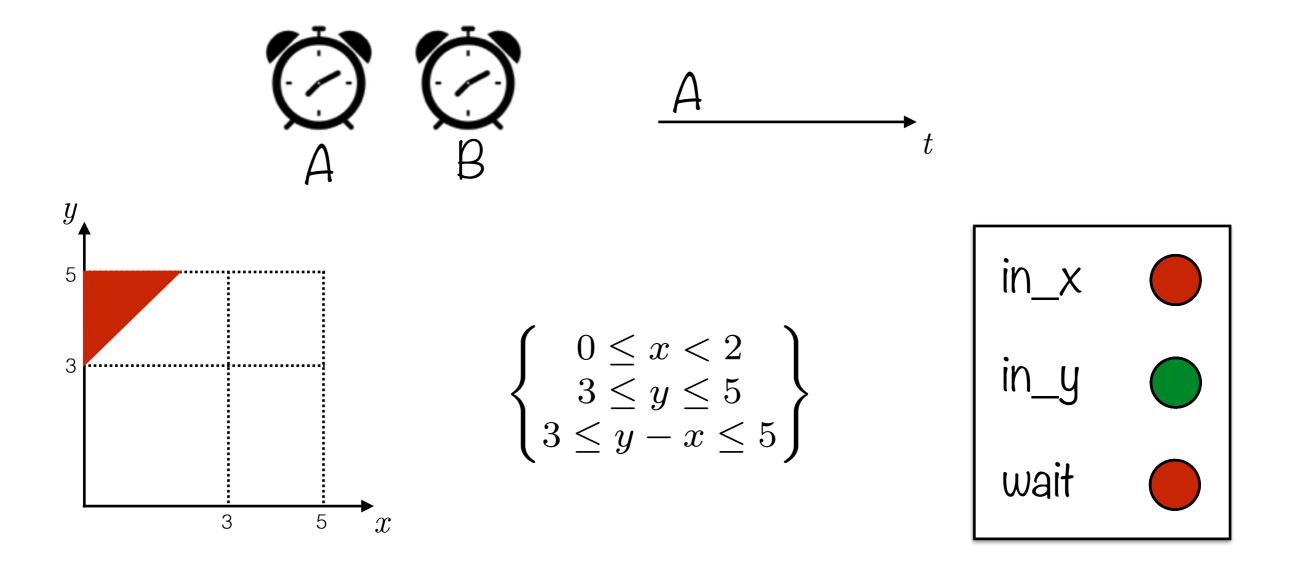
Symbolic Simulation of a pair of quasi-periodic clocks?



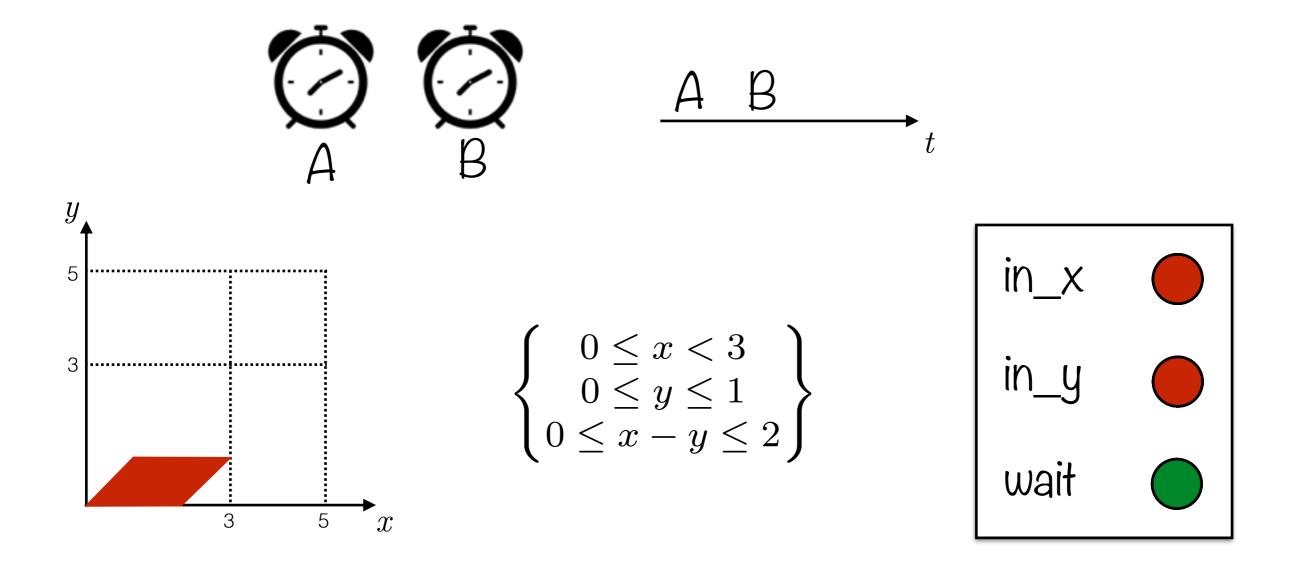
Symbolic Simulation of a pair of quasi-periodic clocks?



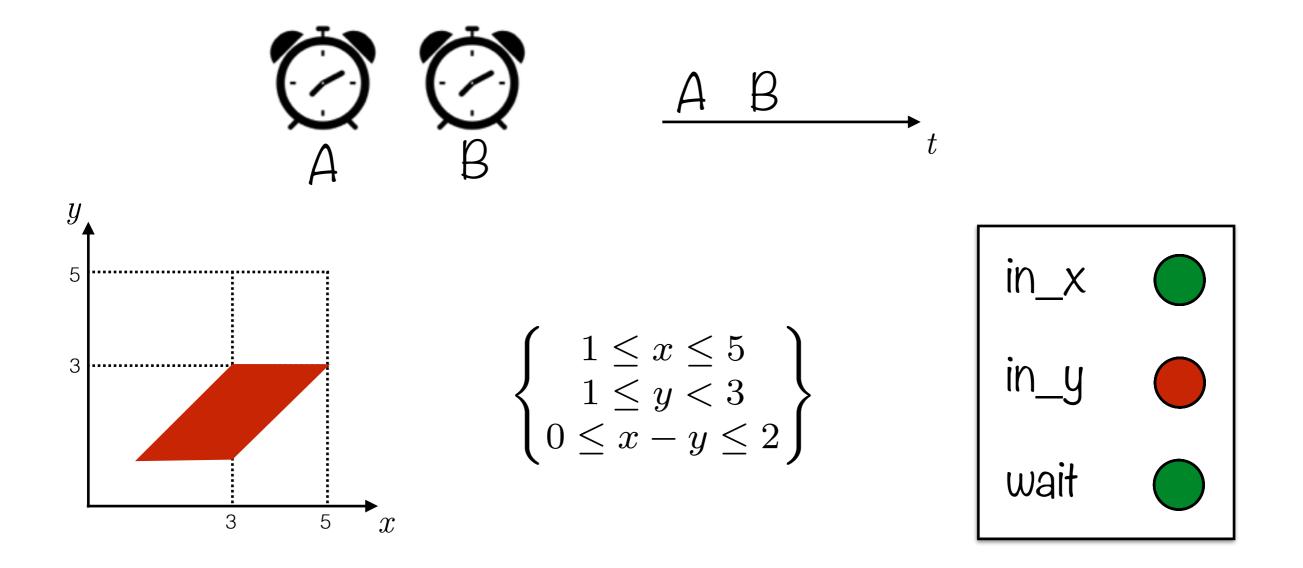
Symbolic Simulation of a pair of quasi-periodic clocks?



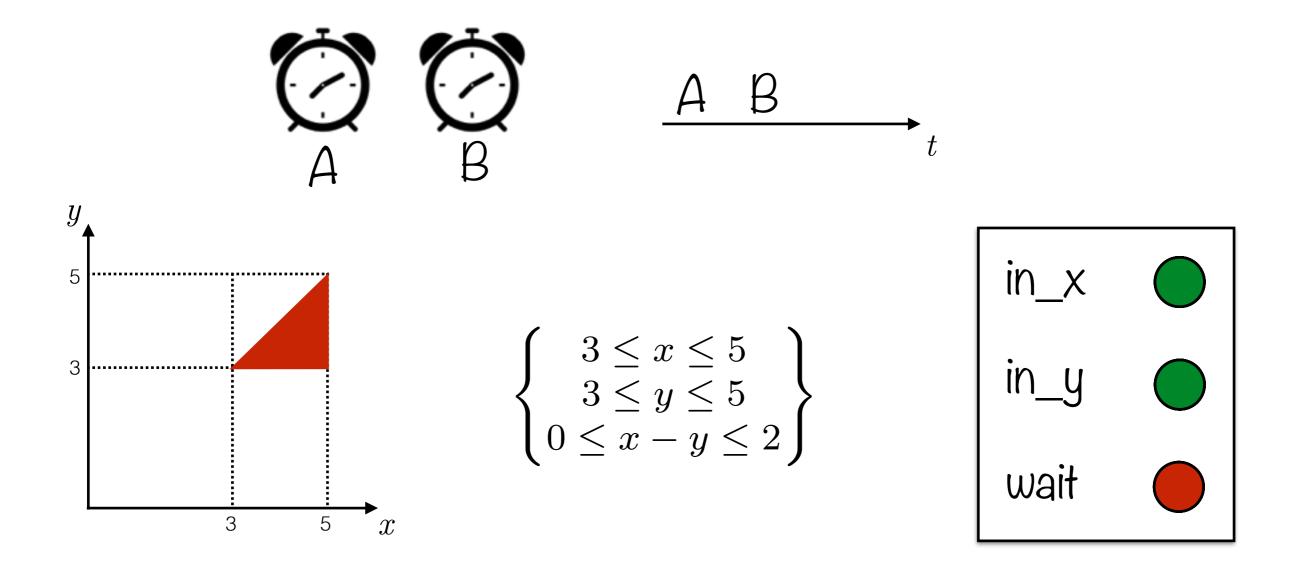
Symbolic Simulation of a pair of quasi-periodic clocks?



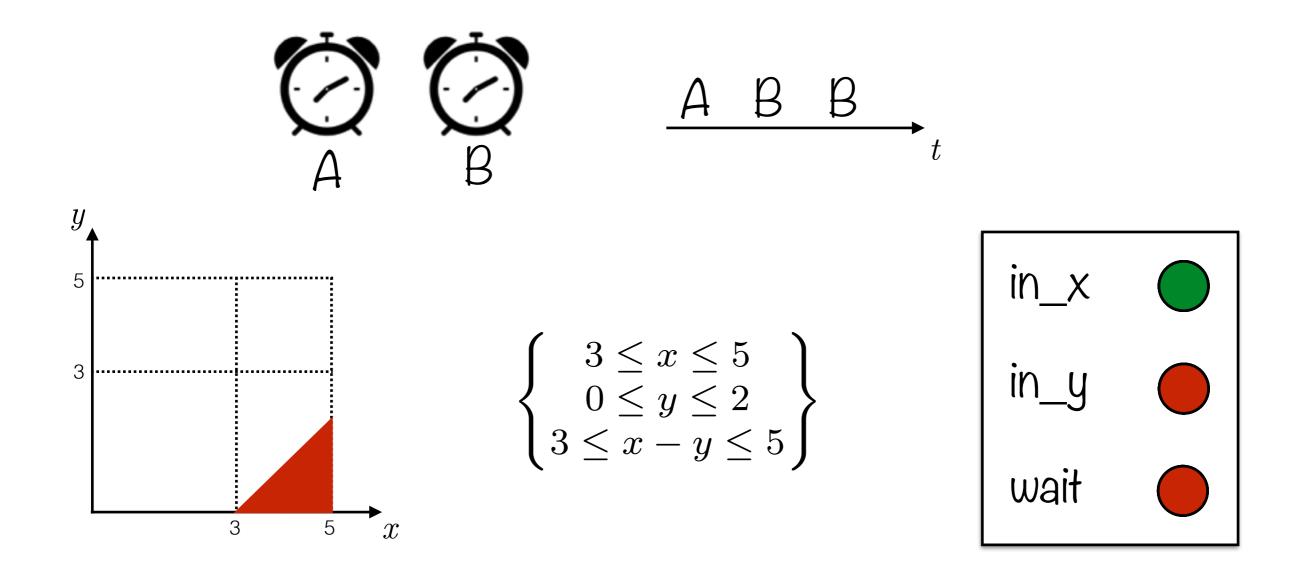
Symbolic Simulation of a pair of quasi-periodic clocks?



Symbolic Simulation of a pair of quasi-periodic clocks?

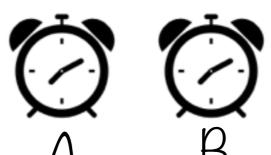


Symbolic Simulation of a pair of quasi-periodic clocks?



Symbolic Simulation of a pair of quasi-periodic clocks?

let hybrid qp_archi (in_x, in_y) = ticA, ticB where rec ticA = metro (in_x, 3, 5) No more than two ticks of one clock and ticB = metro (in_x, 3, 5) between two ticks of the other



y

3

5

 \mathcal{X}

 $\left\{ \begin{array}{c} 3 \le x \le 5\\ 0 \le y \le 2\\ 3 \le x - y \le 5 \end{array} \right\}$

В

in_y wait

Future Work

Prototype implementation in zélus

Source to source transformation and runtime

More complex clock domains

octagon, polyhedron, ...

Under-approximation / Over-approximation

safety vs. precision

Generate discrete controllers

for instance quasi-synchronous controllers

Improve test coverage see [Alur et al 2008]