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The score is a specification of a musical reactive system   



Anthèmes II (1994)

New version using antescofo (2008)
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The Antescofo Language
Goal: Jointly specify electronic and instrumental parts



NOTE   60   1.0
0.0   'a_0'

NOTE   62   1.0
0.5   GROUP   loose  causal
        {  0.0   'a_1'
           1.0   'a_2'
           1.0   'a_3'  }

NOTE   64   2.0

4
4" # $#Voice

a0
group

a1 a2

0.5

1.0

e1 e2 e3

a3
1.0

• Time is relative to the tempo

• Electronic actions are characterized by a delay

• Hierarchical structure: groups and nested groups

• Synchronization with the musician : tight, loose

• Error handling strategies : partial, causal

[Echeveste et al. 2012]
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Goal: Jointly specify electronic and instrumental parts

The Antescofo Language

Link with synchronous 
languages?



ReactiveML
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The temporal expressiveness of synchronous 

languages with the power of functional programming



OCaml

Data structures

Control structures

Synchronous model of concurrency

A global logical time

Parallel composition

Communication between processes

8

ReactiveML
[Mandel-Pouzet 2005]



The Synchronous Hypothesis
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The Language
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Basics 
Synchronization: pause
Execution: run <expr>

Composition 
Sequence: <expr> ; <expr>
Parallelism: <expr> || <expr>

Process 
let process <id> {<pattern>} = <expr>

State machines, executed through several instants.
Simple OCaml functions are considered to be instantaneous.

Signals 
Definition: signal <id>

Emission: emit <id>
Waiting: await <id>

Broadcast communication 
between processes



First Example
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Wait in parallel for the emission of two signals

let process simple a b =
(await a; print "a")
||
(await b; print "b")

val simple:
(unit, unit) event -> (unit, unit) event ->
unit process
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Wait in parallel for the emission of two signals

signals

Parallel
composition

let process simple a b =
(await a; print "a")
||
(await b; print "b")

val simple:
(unit, unit) event -> (unit, unit) event ->
unit process



Live Coding
Modify, correct and interact with the score  

during the performance
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Automatic Accompaniment
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• Functional programming 
modular definition of the accompaniment

• Reactive programming 
interaction with the score during the performance 



Definitions
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let bass = [0.0, (A, Min); 2.0, (C, Maj); ...]
val bass: (delay * chord) list

let arpeggio chord =
...
group Loose Local
[0.0, action_note (fond);
1.0, action_note (third);
2.0, action_note (fifth);}]

val arpeggio: chord -> asco_event

let process basic_accomp =
run (link asco 2 roots)

val basic_accomp: unit process

1.Define the bass line  
 

2.Define the accompaniment style  
 

 

 

3.Link with the performance



Interactions

• Kill a process when a signal is emitted 
allow to modify the accompaniment 

• Suspend a the execution of a process 
pause and resume a process with a signal

• Dynamically change the behavior of a process 
switch between different kinds of accompaniment 

15



Kill a Process
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Example of a higher-order process

let process killable k p =

do

run p

until k done

val killable:
(unit, unit) event -> unit process ->
unit process
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Kill a Process
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Example of a higher-order process

control signal

process

let process killable k p =

do

run p

until k done

val killable:
(unit, unit) event -> unit process ->
unit process



Dynamic Changes
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Example of a recursive higher-order process

let process rec replaceable replace p =
do
run p

until replace (q) ->
run (replaceable replace q)

done
val replaceable:

(unit process, unit process) event ->
unit process -> unit process
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Dynamic Changes
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process

new behavior  
signal can carry processes

Example of a recursive higher-order process

signal

let process rec replaceable replace p =
do
run p

until replace (q) ->
run (replaceable replace q)

done
val replaceable:

(unit process, unit process) event ->
unit process -> unit process
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Example: Steve Reich’s Piano Phase

New Reactive Behaviors
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Piano Phase ...

Problem:
We do not want to compute a priori 
when resynchronizations will occur
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Alice

Bob



... in Mixed Music
Live musician  

Plays the constant speed part

Synchronization

Desynchronizatio

Electronic  
Handles the desynchronization

Tempo

Position

Listening Machine
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AliceBob

• Play slightly faster

• Track the first note of Bob

• Resynchronize when the k-th note of Alice 
is close enough of the first note of Bob



Implementation
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Two phases:
Synchronization  

Desynchronization  



Implementation

Play the melody four times 
and follow the tempo  

Synchronization  

Emit the signal desync after 
four iterations of the melody  

21



Implementation

Play slightly faster 
and emit the signal first_note 
whenever the first note is played

Track the k-th note of the musician

Compare the emission of signals 
kth_note and first_note and emit 
sync when they are close enough

Desynchronization  

21



Why ReactiveML?
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• A synchronous language 
expressiveness for time and events

• Functional, typed language, on top of OCaml  
recursion and higher order processes

• Efficient implementation  
no busy waiting

• Dynamical features 
dynamical creation of processes



In Practice

• Embedding the Antescofo language 
new implementation of the sequencer  
using the actual antescofo listening machine

• Extend the Antescofo language 
functional and reactive programming

• A tool for prototyping new features 
reactive behaviors, live coding, new attributes

• Link with other media  
graphical interface, top-level, ...

23



To Continue...
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www.reactiveml.org/farm13

http://www.reactiveml.org/emsoft13
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