
Programming Mixed Music in ReactiveML

Guillaume Baudart, ENS  
Louis Mandel, ENS
Marc Pouzet, ENS

FARM’13 Boston, USA 09.28.2013

Antescofo

2

Mixed Music and Antescofo

Score

[Cont 2008]

Antescofo

Antescofo

2

Feedback

Mixed Music and Antescofo

Score

[Cont 2008]

Antescofo

3

Antescofo

Listening machine Sequencer

Position

Tempo

Feedback

Antescofo Architecture

Score

[Cont 2008]

Antescofo

4

Antescofo

Listening machine Sequencer

Position

Tempo

Feedback

Antescofo Architecture

Discrete  
Controller

DSP  
Interface

Real-Time  
Environment

[Cont 2008]

Antescofo

4

Antescofo

Listening machine Sequencer

Position

Tempo

Feedback

Antescofo Architecture

Discrete  
Controller

DSP  
Interface

Real-Time  
Environment

[Cont 2008]

The score is a specification of a musical reactive system

Anthèmes II (1994)

New version using antescofo (2008)
5

The Antescofo Language
Goal: Jointly specify electronic and instrumental parts

NOTE 60 1.0
0.0 'a_0'

NOTE 62 1.0
0.5 GROUP loose causal
 { 0.0 'a_1'
 1.0 'a_2'
 1.0 'a_3' }

NOTE 64 2.0

4
4" # $#Voice

a0
group

a1 a2

0.5

1.0

e1 e2 e3

a3
1.0

• Time is relative to the tempo

• Electronic actions are characterized by a delay

• Hierarchical structure: groups and nested groups

• Synchronization with the musician : tight, loose

• Error handling strategies : partial, causal

[Echeveste et al. 2012]

6

Goal: Jointly specify electronic and instrumental parts

The Antescofo Language

NOTE 60 1.0
0.0 'a_0'

NOTE 62 1.0
0.5 GROUP loose causal
 { 0.0 'a_1'
 1.0 'a_2'
 1.0 'a_3' }

NOTE 64 2.0

4
4" # $#Voice

a0
group

a1 a2

0.5

1.0

e1 e2 e3

a3
1.0

• Time is relative to the tempo

• Electronic actions are characterized by a delay

• Hierarchical structure: groups and nested groups

• Synchronization with the musician : tight, loose

• Error handling strategies : partial, causal

[Echeveste et al. 2012]

6

Goal: Jointly specify electronic and instrumental parts

The Antescofo Language

Link with synchronous
languages?

ReactiveML

7

The temporal expressiveness of synchronous

languages with the power of functional programming

OCaml

Data structures

Control structures

Synchronous model of concurrency

A global logical time

Parallel composition

Communication between processes

8

ReactiveML
[Mandel-Pouzet 2005]

The Synchronous Hypothesis

1 2 3

Inputs Treatment

Real-time

Logical Time

9

Outputs

0

The Language

10

Basics
Synchronization: pause
Execution: run <expr>

Composition
Sequence: <expr> ; <expr>
Parallelism: <expr> || <expr>

Process
let process <id> {<pattern>} = <expr>

State machines, executed through several instants.
Simple OCaml functions are considered to be instantaneous.

Signals
Definition: signal <id>

Emission: emit <id>
Waiting: await <id>

Broadcast communication
between processes

First Example

11

Wait in parallel for the emission of two signals

let process simple a b =
(await a; print "a")
||
(await b; print "b")

val simple:
(unit, unit) event -> (unit, unit) event ->
unit process

First Example

11

Wait in parallel for the emission of two signals

signals

let process simple a b =
(await a; print "a")
||
(await b; print "b")

val simple:
(unit, unit) event -> (unit, unit) event ->
unit process

First Example

11

Wait in parallel for the emission of two signals

signals

Parallel
composition

let process simple a b =
(await a; print "a")
||
(await b; print "b")

val simple:
(unit, unit) event -> (unit, unit) event ->
unit process

Live Coding
Modify, correct and interact with the score  

during the performance

12

Automatic Accompaniment

13

!!!!!
"

4
4#

$%&

$$%$ $ &

$$ $%

$%$$ $%
$ $%$$ $%$%$% $

$$%
$

Am C D F Am C E

!!!!!

!!

!

4

#
$%&$$ $$$ $%$%$ $$%$$ $%$% ''5

Am C D F Am E Am

The house of the rising sun

• Functional programming 
modular definition of the accompaniment

• Reactive programming 
interaction with the score during the performance 

Definitions

14

let bass = [0.0, (A, Min); 2.0, (C, Maj); ...]
val bass: (delay * chord) list

let arpeggio chord =
...
group Loose Local
[0.0, action_note (fond);
1.0, action_note (third);
2.0, action_note (fifth);}]

val arpeggio: chord -> asco_event

let process basic_accomp =
run (link asco 2 roots)

val basic_accomp: unit process

1.Define the bass line  
 

2.Define the accompaniment style  
 

 

 

3.Link with the performance

Interactions

• Kill a process when a signal is emitted 
allow to modify the accompaniment

• Suspend a the execution of a process 
pause and resume a process with a signal

• Dynamically change the behavior of a process 
switch between different kinds of accompaniment 

15

Kill a Process

16

Example of a higher-order process

let process killable k p =

do

run p

until k done

val killable:
(unit, unit) event -> unit process ->
unit process

Kill a Process

16

Example of a higher-order process

process

let process killable k p =

do

run p

until k done

val killable:
(unit, unit) event -> unit process ->
unit process

Kill a Process

16

Example of a higher-order process

control signal

process

let process killable k p =

do

run p

until k done

val killable:
(unit, unit) event -> unit process ->
unit process

Dynamic Changes

17

Example of a recursive higher-order process

let process rec replaceable replace p =
do
run p

until replace (q) ->
run (replaceable replace q)

done
val replaceable:

(unit process, unit process) event ->
unit process -> unit process

Dynamic Changes

17

process

Example of a recursive higher-order process

let process rec replaceable replace p =
do
run p

until replace (q) ->
run (replaceable replace q)

done
val replaceable:

(unit process, unit process) event ->
unit process -> unit process

Dynamic Changes

17

process

Example of a recursive higher-order process

signal

let process rec replaceable replace p =
do
run p

until replace (q) ->
run (replaceable replace q)

done
val replaceable:

(unit process, unit process) event ->
unit process -> unit process

Dynamic Changes

17

process

new behavior  
signal can carry processes

Example of a recursive higher-order process

signal

let process rec replaceable replace p =
do
run p

until replace (q) ->
run (replaceable replace q)

done
val replaceable:

(unit process, unit process) event ->
unit process -> unit process

18

Example: Steve Reich’s Piano Phase

New Reactive Behaviors

Piano Phase ...

19

Alice

Bob

Piano Phase ...

Synchronization

19

Alice

Bob

Piano Phase ...

Desynchronization

19

Alice

Bob

Piano Phase ...

Desynchronization

19

Alice

Bob

Piano Phase ...

19

Alice

Bob

Piano Phase ...

19

Alice

Bob

Piano Phase ...

19

Alice

Bob

Piano Phase ...

19

Alice

Bob

Piano Phase ...

19

Alice

Bob

Piano Phase ...

Problem:
We do not want to compute a priori
when resynchronizations will occur

19

Alice

Bob

... in Mixed Music
Live musician  

Plays the constant speed part

Synchronization

Desynchronizatio

Electronic  
Handles the desynchronization

Tempo

Position

Listening Machine

20

AliceBob

... in Mixed Music
Live musician  

Plays the constant speed part

Synchronization

Desynchronizatio

Electronic  
Handles the desynchronization

Play at the same speed

Tempo

Position

Listening Machine

20

AliceBob

... in Mixed Music
Live musician  

Plays the constant speed part

Synchronization

Desynchronizatio

Electronic  
Handles the desynchronization

Play at the same speed

Tempo

Position

Listening Machine

20

AliceBob

• Play slightly faster

• Track the first note of Bob

• Resynchronize when the k-th note of Alice
is close enough of the first note of Bob

Implementation

21

Two phases:
Synchronization  

Desynchronization  

Implementation

Play the melody four times
and follow the tempo  

Synchronization  

Emit the signal desync after
four iterations of the melody  

21

Implementation

Play slightly faster 
and emit the signal first_note
whenever the first note is played

Track the k-th note of the musician

Compare the emission of signals
kth_note and first_note and emit
sync when they are close enough

Desynchronization  

21

Why ReactiveML?

22

• A synchronous language 
expressiveness for time and events

• Functional, typed language, on top of OCaml  
recursion and higher order processes

• Efficient implementation  
no busy waiting

• Dynamical features 
dynamical creation of processes

In Practice

• Embedding the Antescofo language 
new implementation of the sequencer  
using the actual antescofo listening machine

• Extend the Antescofo language 
functional and reactive programming

• A tool for prototyping new features 
reactive behaviors, live coding, new attributes

• Link with other media  
graphical interface, top-level, ...

23

To Continue...

24

www.reactiveml.org/farm13

http://www.reactiveml.org/emsoft13

25

[Mandel-Pouzet 2005] L. Mandel and M. Pouzet. ReactiveML: a reactive extension to ML.
In Proceedings of the International Conference on Principles and Practice of
Declarative Programming, 2005.

[Mandel-Plateau 2008] L. Mandel and F. Plateau. Interactive programming of reactive
systems. In Proceedings of Model-driven High-level Programming of Embedded
Systems, 2008.

[Cont 2008] A. Cont. Antescofo: Anticipatory synchronization and control of interactive
parameters in computer music. In International Computer Music Conference, 2008.

[Echeveste et al 2012] J. Echeveste, A. Cont, J.-L. Giavitto, and F. Jacquemard. Operational
semantics of a domain specific language for real time musician-computer interaction.
Journal of Discrete Event Dynamic Systems, 2013.

References

